
UCLA
UCLA Electronic Theses and Dissertations

Title
Regular languages extended with reduplication: Formal models, proofs and illustrations

Permalink
https://escholarship.org/uc/item/4p03v92f

Author
Wang, Yang

Publication Date
2021

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4p03v92f
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

Los Angeles

Regular languages extended with reduplication:

Formal models, proofs and illustrations

A thesis submitted in partial satisfaction

of the requirements for the degree

Master of Arts in Linguistics

by

Yang Wang

2021

© Copyright by

Yang Wang

2021

ABSTRACT OF THE THESIS

Regular languages extended with reduplication:

Formal models, proofs and illustrations

by

Yang Wang

Master of Arts in Linguistics

University of California, Los Angeles, 2021

Professor Timothy Hunter, Chair

Total reduplication is common in natural language phonology and morphology. However,

productive total reduplication requires computational power beyond context-free, while other

phonological and morphological patterns are regular, or even sub-regular. Thus, existing lan-

guage classes characterizing reduplicated strings inevitably include typologically unattested

context-free patterns, such as reversals. This thesis introduces two ways of extending regular

languages to incorporate reduplication. Firstly, we add copying as an expression operator

and define regular copying expressions (RCEs) in a more restricted way. Secondly, we aug-

ment finite-state machinery with the ability to recognize copied strings and introduce a new

computational device: finite-state buffered machine (FSBMs). As a result, the class of reg-

ular languages and languages derived from them through a primitive copying operation is

characterized, named regular+copying languages (RCLs). We then examine and discuss the

closure properties of this language class. As suggested by previous literature (Gazdar and

Pullum, 1985, 278), regular+copying languages should approach the correct characterization

of natural language word sets.

ii

The thesis of Yang Wang is approved.

Dylan Bumford

Bruce Hayes

Timothy Hunter, Committee Chair

University of California, Los Angeles

2021

iii

致王素贞与帅振全

For Suzhen Wang and Zhenquan Shuai

iv

TABLE OF CONTENTS

1 Introduction . 1

1.1 Background . 3

1.1.1 The puzzle of reduplication . 3

1.1.2 Previous computational works on reduplication 9

1.2 Main questions addressed in this thesis . 11

1.3 The organization of this thesis . 12

2 Defining regular + copying languages . 14

2.1 Notations: regular languages . 14

2.2 Regular Copying Expressions . 17

2.2.1 Closure: homomorphism . 19

2.3 Finite-State Buffered Machine . 22

2.3.1 Finite-state buffered machines in a nutshell 22

2.3.2 Mathematical definitions and examples 24

2.3.3 The realization of the copying mechanism and complete-path FSBMs 28

2.3.4 The equivalence between general FSBMs and complete-path FSBMs . 33

2.3.5 Closure properties of complete-path FSBMs 34

2.4 The equivalence between RCEs and FSBMs 43

2.4.1 RCE to FSBM . 43

2.4.2 FSBM to RCE . 45

2.5 Regular + copying languages . 48

3 The linguistic relevance of the formal methods 49

3.1 Closed under intersection with regular languages 49

v

3.2 Closed under homomorphism . 50

4 Discussion . 52

4.1 Typology of reduplication . 52

4.1.1 Non-local Reduplication . 52

4.1.2 Multiple Reduplication . 53

4.1.3 Reduplication with non-identical copies 55

5 Conclusion . 56

A Mathematical preliminaries . 58

B . 60

C . 68

vi

LIST OF FIGURES

1.1 The four-level Chomsky Hierarchy . 2

1.2 A finite-state machine for whole-base copying with the set of bases = {aaa, aba,

aab, abb, baa, bba, bab, bbb} . 6

1.3 Crossing dependencies in Dyirbal total reduplication ‘midi-midi’ (top) versus

nesting dependencies in made-up string reversal ‘midi-idim’ (bottom) 8

1.4 The class of regular+copying languages (red oval shape) in the Chomsky Hierarchy. 12

2.1 Mode changes and input-buffer interaction of an FSBMM on “. . . abbababbab. . . ”.

Assume M is armed with sufficient input consuming and symbol matching appa-

ratus. The machine switches to bmode to temporarily store symbols in queue-like

buffer. At the breaking point, it shifts to e mode for symbol matching between

what’s in the buffer and what’s in the input. After all symbols matched, the

buffer is emptied and the machine further switches to n mode. 23

2.2 An FSBM M1 with G = {q1} and H = {q3}. L(M1) = {ww |w ∈ {a, b}∗} 25

2.3 An example FSBM and the corresponding FSA for the base language 26

2.4 M2 in Figure 2.3a accepts abbabb . 26

2.5 M2 in Figure 2.3a rejects ababb . 27

2.6 An FSBM M3 for Agta CVC-reduplicated plurals: G = {q1} and H = {q4} . . . 27

2.7 M2 in Figure 2.6 accepts taktakki . 28

2.8 M2 in Figure 2.6 rejects tiktakki . 28

2.9 The template for the implementation of the copying in FSBMs. Key components:

G state, H states, transitions between H states, and strict ordering between G

and H. Solid lines represent a transition in one step. Dotted lines represent a

sequence of normal transitions. Black dotted lines replace plain non-G non-H

states. H states in between H states are replaced by red dashed lines. 29

vii

2.10 Possible paths in a machine failing on the completeness requirement. Dotted lines

represent a sequence of normal transitions. Dashed lines are special transitions

between H states in one step. 31

2.11 An incomplete FSBM M4 with G = ∅ and H = {q2, q4}; L(M4) = {abba} 32

2.12 An FSA (or an FSBM with G = ∅ and H = ∅) whose language is equivalent as

M3 in Figure 2.11 . 32

2.13 An example for the intersection construction . 35

2.14 Constructions used for the homomorphic language in Theorem 3. 37

2.15 Under-generation of the conventional construction of the inverse homomorphic

image . 38

2.16 The construction used in the union of two FSBMs 39

2.17 The construction used in the concatenation of two FSBMs 40

2.18 Problems arise in the concatenation of two incomplete paths. Dotted lines repre-

sent a sequence of normal transitions. Red dashed lines represent a sequence of

special transitions . 41

2.19 The construction used in the star operation . 42

2.20 FSBMs for the base step in Theorem 5. All have G = ∅;H = ∅ 43

2.21 The construction used in converting the copy expression RC
1 to a finite state

buffered machine. L(M0) = L(R1). 44

2.22 The conversion of the copying mechanism in an FSBM to RCE. P represents the

plain, non-H, non-G states . 46

2.23 An example conversion of the copying mechanism to a copy expression 47

3.1 The linguistic relevance of the closure under homomorphism 51

viii

LIST OF TABLES

1.1 Total reduplication:Dyirbal plurals (top); partial reduplication:Agta plurals (bot-

tom). 3

1.2 Reduplication and bounded/unbounded copying.“Boundedness” here indicates

whether the corresponding language is regular. 7

2.1 Different cases for G and H states along a path 33

2.2 Surveyed closure properties of RCLs . 48

4.1 Chukchee absolutive singular: copies the first CVC sequence to the end of the word 53

4.2 Multiple reduplication in Thompson . 54

4.3 Non-identical copies in Javanese . 55

ix

ACKNOWLEDGMENTS

I am deeply grateful for the supports and guidance I received throughout this project from

my committee: Tim Hunter, Bruce Hayes, and Dylan Bumford, without whom I could not

have completed this thesis. Additionally, I owe a debt of gratitude to Kie Zuraw, Ed Keenan

and Claire Moore-Cantwell, who directed me to several excellent pieces of works and kindly

offered me insights from the very beginning of this project. I would also like to thank Hossep

Dolatian for the valuable questions, suggestions and discussions.

Many thanks to the audience at the UCLA phonology seminar, the reviewers and audience

at the 18th SIGMORPHON Workshop on Computational Research in Phonetics, Phonol-

ogy, and Morphology, the ESSLLI 2021 Student Session, and the 2021 Annual Meeting on

Phonology for their inputs.

I would also like to thank my fellow graduate students, in particular Lily Xi Xu, Iza Sola-

Llonch, Huilei Wang, Katya Khlystova and Abeer Abbas for their motivations, inspirations,

inputs and supports. Thanks to my friends, especially Jialan Ma, Ziyi Wang, Lu Feng,

Xuqing Zhang, Ziyan Fu, and Yaying Shen, for phone-calls and encouragements during the

most difficult times in the pandemic. Thanks to Keyan Zhang for his meals and hugs. Thanks

to my family, my parents Yanhua Shuai and Zhetao Wang, my grandparents Suzhen Wang

and Zhenquan Shuai, for everything.

x

CHAPTER 1

Introduction

Formal language theory (FLT) provides computational mechanisms characterizing different

classes of abstract languages. Pursuing formal language theory in the study of human lan-

guages, researchers would hope to discover a hierarchy of grammar formalisms that matches

empirical findings on human languages: more complex languages in such a hierarchy are

supposed to be 1) less common in natural language typology; 2) harder for learners to learn

and/or 3) harder for speakers to process.

The classical Chomsky Hierarchy (CH) arranges formal languages in four levels with in-

creasing complexity: regular, context-free, context-sensitive, recursively enumerable (Chom-

sky, 1956, 1959; Jäger and Rogers, 2012). This relation is visualized in Figure 1.1. Essen-

tially, every regular language is a context-free language, and every context-free language is a

context-sensitive language, and so on. An example shows that not all context-free languages

are regular is the string reversal language wwR. Similarly, some languages are context-

sensitive or recursively enumerable but not context-free. Those patterns sitting higher in

the CH are regarded as more complex than those in a lower position, since they demand

more computational resources: the automata/grammars fully capturing the more complex

patterns are more powerful and less restricted.

Does the CH notion of formal complexity have the desired empirical correlates in nat-

ural languages? Several findings suggest that those four levels do not align with natural

languages precisely, some leading to major refinements of the Chomsky Hierarchy. First, the

unbounded crossing dependencies in Swiss-German case marking (Shieber, 1985) facilitated

various attempts to characterize mildly context-sensitive languages (MCS), which extend

context-free languages (CFLs) but still preserve some useful properties of CFLs (e.g., Joshi,

1

recursively enumerablecon
text sensitivecontext-free

regular

Figure 1.1: The four-level Chomsky Hierarchy

1985; Seki et al., 1991; Steedman, 1996; Stabler, 1997). Secondly, it is generally accepted

that phonology, with the exception of reduplication which is the focus of this thesis, is reg-

ular (e.g. Johnson, 1972; Kaplan and Kay, 1994). However, being regular is argued to be

an insufficiently restrictive property for phonological knowledge of well-formedness, because

some generalizations falling into the regular set are typologically unattested. For example,

hardly any languages have their words sensitive to an even or odd number of certain sounds

in a natural class (Heinz, 2018). With typological evidence, the sub-regular hierarchy (e.g

McNaughton and Papert, 1971; Simon, 1975) was further developed, which continues to be

an active area of research (e.g. Heinz, 2007; Heinz et al., 2011; Chandlee, 2014; Graf, 2017;

Heinz, 2018).1

This thesis analyzes another mismatch between existing well-known language classes and

empirical findings: reduplication, which involves copying operations (Inkelas and Zoll, 2005)

on certain base forms. The reduplicated phonological strings are either of total identity

1One might wonder why this thesis adds copying to the regular set but not a more restricted set. Firstly,
the strictly local (SL), the strictly piecewise (SP) and the tier-based strictly local classes are all reasonable
candidates. Graf (2017) further supplements domain restrictions to strictly piecewise grammars and finds the
resulting interval-based strictly piecewise languages contain SL, SP, and TSL languages. Moreover, Jardine
(2016) argues tonal patterns as mappings are fully regular processes while segmental patterns are maximally
weakly deterministic and thus less complex. However, McCollum et al. (2020) challenges this typological
asymmetry by advancing that segmental processes require the same expressivity as tonal processes, which
has further implications on the sub-regular hypothesis. As the debate continues, for now, we remain agnostic
about which set should be the most restrictive one to add the copying operation. Secondly, the regular set is
one of the most well-studied classes with practically useful grammars/automata. Thus, we believe starting
with the regular set is an important and reasonable step to pursue.

2

(total reduplication) or of partial identity (partial reduplication) to the base forms. Table 1.1

provides examples showing the difference between total reduplication and partial reduplica-

tion. In Dyirbal, the pluralization of nominals is realized by fully copying the singular stems,

while in Agta examples, plural forms only copy the first CVC sequence of the corresponding

singular forms (Healey, 1960; Marantz, 1982). 2

Total reduplication: Dyirbal plurals (Dixon, 1972, 242; Inkelas, 2008,352)
Singular Gloss Plural Gloss
midi ‘little, small’ midi-midi ‘lots of little ones’
gulgiói ‘prettily painted men’ gulgiói-gulgiói ‘lots of prettily painted men’

Partial reduplication: Agta plurals (Healey, 1960,7)
Singular Gloss Plural Gloss
labáng ‘patch’ lab-labáng ‘patches’
takki ‘leg’ tak-takki ‘legs’

Table 1.1: Total reduplication:Dyirbal plurals (top); partial reduplication:Agta plu-
rals (bottom).

1.1 Background

1.1.1 The puzzle of reduplication

1.1.1.1 Reduplication in natural languages

Enough evidence supports the productivity of reduplication patterns in natural languages.

Waksler (1999) presented code-switching data from Tagalog, as in Example 1. Zuraw (1996,

9) also provided some examples of extending Tagalog CV-reduplication to novel English

forms, such as thank you and the form [mag-TE-TæNkju]. Clearly, Tagalog speakers could

apply verb reduplication to novel forms.

2Here, we adopt a simplistic analysis. When the bases start with a vowel, Agta copies the first VC
sequence, as in uffu ‘thigh’ and uf-uffu ‘thighs’. Thus, a more complete generalization is that Agta copies a
(C)VC sequence.

3

(1) Saan
where

si
det

Jason?
Jason

Nag-SWI-SWIMMING
present-redup-SWIMMING

siya.
he

‘Where is Jason? He’s swimming.’

Reduplication is common cross-linguistically. In the sample reported by Rubino (2013)

and surveyed in Dolatian and Heinz (2020), 313 out of 368 natural languages exhibit produc-

tive reduplication, of which 35 languages have total reduplication but not partial reduplica-

tion. As a comparison, context-free string reversals are rare in phonology and morphology

(Marantz, 1982) and appear to be confined to language games (Bagemihl, 1989), whose

status of phonology is unclear.

Additionally, in a few experiments that, either directly or indirectly, study the learnabil-

ity of identity-based patterns, reduplication appears to be prominent and easy to learn. Past

empirical studies (Marcus et al., 1999, 2007) show infants can extract rules from redupli-

cated patterns. One recent artificial grammar learning study (Moreton et al., 2021) directly

compares the learning of reduplication with the learning of a syllable-level reversal. In two

experiments, adult learners were trained to recognize either a reduplication or a syllable

reversal pattern. In the first experiment, participants did not know the rules and conditions

beforehand. They were required to induce the generalizations by themselves and apply what

they learned. Participants in the reduplication group showed above-chance performance

whether they could state the rule or not. However, for the syllable-reversal condition, only

participants who could correctly state the rule at the end showed above-chance performance,

which hints the explicit reasoning in learning reversals. In addition, those participants who

learned the reversal pattern showed a longer reaction time, suggesting more non-automatic

computation involved. In the second experiment, participants were informed of the gen-

eralization they should apply. Participants in the reduplication group still showed better

performance. These results support the hypothesis that the reversal pattern is more com-

plex than the reduplication pattern and requires more effortful computation. To the extent

that reversal was learned, it was achieved by a more explicit rule rather than unconscious

linguistic knowledge.

An interesting aspect of this AGL study is that the stimuli used were auditory, purely

4

phonological, meaningless strings, chunks of which are identical. This seems to suggest

that reduplication or reduplication-like patterns are not all morphologically relevant. More-

over, Zuraw (2002) proposes aggressive reduplication in phonology: speakers are sensitive

to adjacent internal phonological similarity within words, and reduplication-like structures

are attributed to those words. Direct evidence supporting aggressive reduplication comes

from some pseudo-reduplication patterns. Pseudo-reduplicated words have one portion (the

pseudo-reduplicant) identical to another portion (the pseudo-base). However, the pseudo-

base does not bear proper morphosyntactic or semantic information and cannot stand alone.

Zuraw (2002) studied Tagalog loanwords from English and Spanish and used them for illus-

trations. Tagalog mid vowel raising does not apply when a preceding mid vowel is present

and the hypothesized motivation is to preserve sub-string similarity. For example, the stem-

ultima vowel /o/ is realized as [u] in [kalus-in] ‘to use a grain leveller on’ but [o] in [todo-in]

‘to include all’.

It has to be admitted that there are too few relevant processing studies to provide solid

conclusions on the complexity of reduplication through the lens of online cognitive activity.

However, the prevalence of reduplication in typology and learning results in experimental

settings converge to one point: in an ideal formal complexity hierarchy that matches em-

pirical findings, reduplication ought to be less complex than patterns exhibiting nesting

dependencies, such as string reversals.

1.1.1.2 Reduplication in the Chomsky Hierarchy

This subsection aims to show that while most of phonological and morphological patterns are

regular, reduplication is not. It starts by investigating the computational issue that arises

by assuming reduplication is fully productive and using unbounded copying as a model.

What is unbounded copying? The term unbounded means ‘no upper bound’. Un-

bounded copying, therefore, is copying without upper bounds on reduplicants. On the other

hand, bounded copying, imposing a limit on the number of segments copied, is proved to be

regular and can be captured by finite-state machinery (Chandlee and Heinz, 2012). As for

5

their empirical coverage, there is no doubt that bounded copying covers the cases of partial

reduplication in natural languages. The situation for total reduplication is more nuanced.

Some previous studies use “unbounded copying” interchangeably with total reduplication, be-

cause total reduplication copies the whole forms of certain bases, which might lead people to

easily equate total reduplication to copying with no limits on the length of the reduplicants.

However, some researchers (e.g. Clark and Yoshinaka, 2014; Chandlee, 2017) differentiated

unrestricted, productive total reduplication from total reduplication on a finite set of bases in

terms of their computational nature. Formally, for {ww |w ∈ L}, the distinction is whether

L is finite or infinite. When reduplication is only applied to a finite set of lexemes, whether

partial or total, the resulting set of reduplicated forms is always finite, and therefore tech-

nically within regular. In the total reduplicated cases, even though the whole bases are

copied, if the set of bases L is finite, the length of the longest string could still be an upper

bound, which invalidates unproductive total reduplication as unbounded copying. Modelers

therefore can take the easy way out by forcing the reduplicated pattern into the regular

class. More specifically, one can construct a 1-way finite-state automata/transducer with

additional states and memorized arcs and represent the memorization of each correspond-

ing reduplicated form. For example, in Figure 1.2, by full listing, the finite state machine

recognizes {ww |w ∈ L} with a finite L = {aaa, aba, aab, abb, baa, bba, bab, bbb}.

Start

Accept

Accept

Accept

Accept

Accept

Accept

Accept

Accept

a

b

a

b

a

b

a
b

a
b

a a a

a a b

a b a

a b b

a
b

a
b

b a a

b a b

b b a

b b b

Figure 1.2: A finite-state machine for whole-base copying with the set of bases =
{aaa, aba, aab, abb, baa, bba, bab, bbb}

6

The feasibility of such construction indeed reveals computational difference between total

reduplication on finite bases versus productive total reduplication, demonstrated in Table 1.2.

Such distinction is more form a mathematical, definition-wise perspective. But it uncovers

Restricted to (current) lexemes Not restricted to lexemes
Partial Reduplication Bounded Bounded
Total Reduplication Bounded Unbounded

Table 1.2: Reduplication and bounded/unbounded copying.“Boundedness” here in-
dicates whether the corresponding language is regular.

the core aspect of two treatments and raises a question about the nature of reduplication:

whether we should employ a memorization account of copying or a fully productive copying

operation, which itself does not impose any number restriction on the set of bases?

As we discussed earlier, natural languages exhibit productive reduplication patterns.

Additionally, from a computational angle, Roark and Sproat (2007) and further Dolatian and

Heinz (2020) challenge the memorization account. They argue 1-way finite-state approach

not only is incapable of capturing productive total reduplication, but also would lead to a

great increase in the number of states or state explosions for bounded copying. Indeed, one

can directly see this from the unwieldy machine aiming to recognize the simple ww language

with only eight possible bases of length three in Figure 1.2. Following them, this thesis

focuses on productive total reduplication and unbounded copying.

Unbounded copying in the Chomsky Hierarchy The simplest yet structurally

dull language representing unbounded copying is Lww = {ww |w ∈ Σ∗}, with any arbitrary

strings made out of an alphabet Σ as candidates of bases. Lww is a well-known non-context

free language (Hopcroft and Ullman, 1979). Its non-context-freeness comes from the in-

curred cross-serial dependencies among segments, similar to Swiss-German case marking

constructions as {aibjcidj | i, j ≥ 1}. For instance, in L = {aibjaibj | i, j ≥ 1}, a subset of

Lww, as always precede bs in both halves. Then, the first i many of as must correspond

with the second i many of as segment by segment, while the first j many of bs must cor-

respond with the second j many of bs segment by segment. Natural languages do possess

7

patterns similar to L, such as Noun o Noun construction in Bambara (Culy, 1985). How-

ever, the typologically-rare string reversal wwR is an instance of nesting dependencies, which

are context-free. Figure 1.3 is an illustration of cross-serial dependency of Dyirbal plurals

‘midi-midi’ and nesting dependency of made-up string reversal ‘midi-idim’.

m i d i m i d i

m i d i i d i m

Figure 1.3: Crossing dependencies in Dyirbal total reduplication ‘midi-midi’ (top)
versus nesting dependencies in made-up string reversal ‘midi-idim’ (bottom)

Syntactic patterns show nesting dependencies at least as often as crossing dependencies.

Mildly context sensitive formalisms, which were argued to be adequate for natural language

syntax (Joshi, 1985; Stabler, 2004), can describe Lww. Joshi et al. (1990, 13) provides a

tree adjoining grammar for this language. A minimalist grammar can be found in Graf

(2013, 119). Multiple context-free grammars (MCFG) are used to implement reduplication

in Primitive Optimality Theory according to the base-reduplicant correspondence theory

(Albro, 2000). A parallel multiple context free grammar (PMCFG) for Lww is in Clark

and Yoshinaka (2014, 13). However, the class of languages recognized by those computa-

tionally powerful formalisms would include all context-free sets, thus inevitably including

typologically unattested patterns, such as reversals, as described earlier.

To summarize, reduplication is productive, common cross-linguistically and easy to learn.

However, in the existing hierarchy of formal languages, it belongs to a language class higher

than the context-free set and requires at least the power of mildly context-sensitive languages

to recognize even the simplest copy language Lww. The extended formal power would include

phonologically and morphologically unattested nesting dependencies, such as string reversal

patterns.

8

1.1.2 Previous computational works on reduplication

This section reviews previous computational works which model reduplication but not nesting

dependencies. There are essentially two lines. The first is to develop better designs than

the memorization account but still limit copying to only a finite set of bases. The second is

to extend only a bit beyond conventional finite-state technology and intentionally exclude

non-reduplicative processes.

Previously, we discussed how modeling unproductive total reduplication could be achieved

by the bulky full-listing account. Many approaches from the first direction aim to reduce

redundancy with more linguistically sound and computationally efficient finite-state tech-

niques. However, these approaches do not add formal power and cannot model produc-

tive total reduplication. One example is finite-state registered machines in Cohen-Sygal

and Wintner (2006) (FSRAs) augmented with finitely many registers as its memory. Even

though it brings extensions to standard finite-state machines, it does not add any compu-

tational power to them. The important equivalence between the augmented machine and

standard finite-state machines is guaranteed by the finite number of registers. Besides this,

some other examples are the compile-replace algorithm in Beesley and Karttunen (2000), the

intersection of a reduplication finite-state machine and the enriched lexical representations

with different types of transitions: repeat, skip and self-loops in Walther (2000) and the EQ

function in Hulden (2009).

The state-of-art finite-state method that computes unbounded copying elegantly and ad-

equately is 2-way finite-state transducers (2-way FSTs) (Dolatian and Heinz, 2018a,b, 2019,

2020), which use the similar idea as conventional 1-way FSTs but can move back and forth on

the input. 2-way FSTs capture reduplication as a string-to-string mapping (w → ww). To

avoid the mirror image function (w → wwR), Dolatian and Heinz (2020) further developed

sub-classes of 2-way FSTs which cannot output anything during right-to-left passes over the

input (cf. rotating transducers: Baschenis et al., 2017).

It should be noted that the issue addressed by 2-way FSTs is a different one from the

topic of this thesis: reduplication is modeled as a function (w → ww), while this thesis

9

aims to characterize a set of strings containing the copy languages with identical sub-strings

(ww). The string set question and the corresponding membership problem are non-trivial and

difficult ones for reasons of both formal aspects and the linguistic motivation. Firstly, since

2-way FSTs are not readily invertible, the inverse relation ww → w for the morphological

analysis problem remains an open question, as acknowledged in Dolatian and Heinz (2020).

Although we do not directly address the morphological analysis problem, recognizing the

reduplicated ww strings is the important first step. To determine if a string x = ww can be

mapped to w seems to require at least recognizing whether x belongs to the ww language.

Secondly, given that 2-way finite-state transducers extend the expressive power of 1-way

finite-state transducers, one might be tempted to look at languages recognized by 2-way

finite-state automata for the non-regular copy languages. However, any 2-way finite-state

automaton is equivalent to some 1-way finite-state automaton, proved independently in

Rabin and Scott (1959) and Shepherdson (1959). In other words, any languages recognized

by a 2-way finite state automaton are in the regular set. For recognizing copy languages,

there is no direct help from looking at the closely related 2-way finite state techniques.

As for the theoretical aspects, as discussed before, there are evidences supporting meaning-

free, non-morphologically-generated reduplication patterns. If the phonology module ever

needs constraints requiring phonological strings of certain forms to be reduplicated, or if the

phonological grammar needs a way to construct segmental correspondence between bases and

reduplicants for surface reduplicated strings and/or sub-string correspondence by Redup in

the aggressive reduplication account, such tasks could be achieved computationally by mod-

els with the ability to recognize the copy languages. Whether those conditions hold is beyond

the scope of this thesis. Overall, it would be desirable to have models that detect sub-string

identity from surface strings whose bases are in the regular set. Of course, more powerful

grammars, such as minimalist grammars and multiple context-free grammars, can help and

achieve these goals. But they appear to be much too powerful for this purpose.

10

1.2 Main questions addressed in this thesis

Given that most phonological and morphological patterns are regular, how can one fit in

reduplicated strings without including reversals? At the same time, how can one rule out

the non-reduplicative, Swiss-German type of crossing dependencies, which appear to be

unattested in phonology? Gazdar and Pullum (1985) made the remark that

We do not know whether there exists an independent characterization of the class

of languages that includes the regular sets and languages derivable from them

through reduplication, or what the time complexity of that class might be, but it

currently looks as if this class might be relevant to the characterization of NL

word-sets.

There are three levels of questions raised in this quote:

• How can a characterization of such class of languages be given?

• After this language class is proposed, what languages are there in this class? What

computational properties does this class possess?

• How does this language class align with natural language patterns?

This thesis aims to provide answers to those questions. It examines what minimal

changes can be brought to regular languages to include stringsets with two copies of the

same sub-strings, while excluding some typologically unattested context-free patterns, such

as reversals, and other crossing dependencies other than reduplication. We name the class of

languages with regular languages and added copied stringsets as regular + copying languages

(RCLs). The intended relation of this language class to other existing language classes is

shown in Fig. 1.4.

Formally, regular+copying languages are defined in two ways in this thesis. First, it

adds a copying expression operator to the existing collection of operations whose closure

defines the regular languages (namely union, concatenation and Kleene star). The set of

11

regular
aibj

context sensitive

mil
dly context sensitive

context-free

wwR

a ib ja ib j
ww

aibjcidj

Figure 1.4: The class of regular+copying languages (red oval shape) in the Chomsky
Hierarchy.

regular+copying languages is the closure under this new expanded set of operations. Second,

this thesis introduces a new computational device: finite-state buffered machine (FSBMs).

These are two-taped finite state automata, with the ability to store symbols from the input

tape into an unbounded memory buffer and compare them to later input symbols, hence

able to detect identity between sub-strings. It turns out that these two formal approaches

yield the same class of languages. After introducing regular+copying languages, we inspect

the corresponding closure properties and conclude with a discussion on their performance in

modeling natural language reduplication.

1.3 The organization of this thesis

• Chapter 2 first gives an overview of the adopted notations. Then, it gives definitions

and examples of regular copying expressions and finite-state buffered machines and

shows their equivalence. The last subsection defines regular+copying languages and

scrutinizes the closure properties of this language class.

• Chapter 3 shows the linguistic relevance of the formal methods and properties.

• Chapter 4 examines (in)capabilities of the current formal models on natural language

reduplication.

12

• Chapter 5 concludes the thesis and proposes directions for future research.

13

CHAPTER 2

Defining regular + copying languages

Section 2.1 reviews basic mathematical definitions relevant in defining regular + copying lan-

guages. We focus on existing characterizations of the regular class, because regular+copying

languages arise from modifications of these characterizations. The rest of this chapter pro-

poses new expressions and a new computing device: the finite-state buffered machines (FS-

BMs) that extend finite-state machines.

2.1 Notations: regular languages

We provide a brief overview of the most fundamental mathematical concepts necessary in

understanding the subsequent sections, namely the relevant notions in the regular class. The

notations are largely standard ones and modifications are emphasized. We tried to keep the

notations consistent across the whole paper. Basic knowledge by the reader (sets, relations

and functions, alphabets and definitions for formal languages) is assumed. Readers not

familiar with those terms can first read through AppendixA, or consult other useful sources

such as Hopcroft and Ullman (1979) and Sipser (2013).

Language classes A class of languages is a set of languages. Probing the computational

properties of different language classes can be achieved by analyzing different classes of gram-

mars or automata that represent a possibly infinite language in finite means. Specifically,

understanding the operations, the mechanisms and computational resources available in a

corresponding class of grammars is instructive to identify the characteristics of languages

within a class.

14

Regular languages Regular languages are sets of strings recognized by finite state au-

tomata (FSAs) and described by regular expressions, whose definitions are provided below.

The limited amount of memory used in an FSA informs us of the constant bound on memory

for computing any regular sets. Meanwhile, regular expressions offer a “bottom-up” view

and allow one to see how a language is decided by the closure of certain operations on an

alphabet.

Definition 1. A finite-state machine (FSA) is a 5-tuple ⟨Q,Σ, δ, I, F ⟩ where

1. Q is a finite set of states

2. Σ is a finite alphabet

3. δ ⊆ Q× (Σ ∪ {ϵ})×Q is the transition relation.

4. I ⊆ Q is a set of initial states

5. F ⊆ Q is a set of final states

Definition 1. defines a non-deterministic finite automata (NFAs). Moreover, it extends

the standard definition of NFA to have a set of initial states but not just one initial state.

However, such extension does not bring more power to the machine, as it is easy to construct

a corresponding FSA with only one initial state ϵ-branching into the previous initial states.

Definition 2. A configuration of a finite state machine C = (w, q) ∈ Σ∗ ×Q where w is

the input string and q is the current state the machine is in.

Definition 3. Given an FSA A, for any x ∈ (Σ ∪ {ϵ}), w ∈ Σ∗ and q1, q2 ∈ Q, we say a

configuration (xw, q1) yields a configuration (w, q2) if and only if (q1, x, q2) ∈ δ, denoted

(xw, q1) ⊢A (w, q2).

Definition 4. A run of an FSA A on the input w is a sequence of configurations C0, C1, . . . Cn

such that 1) ∃q0 ∈ I, C0 = (q0, w); 2) ∃qf ∈ F,Cn = (qf , ϵ) and ∀0 ≤ i < n,Ci ⊢A Ci+1. A

accepts w iff there is a run on A of w. The language recognized by an FSA A, denoted by

L(A), is the set of strings over Σ∗ accepted by A.

15

Now, we switch to the definition of regular expressions by starting with regular operations

on given languages. For any two languages L1 and L2, union, concatenation and star are

three regular operations. The union is L1 ∪ L2 = {u |u ∈ L1 or u ∈ L2}. The concatenation

is L1 ◦L2 = {uv |u ∈ L1 and v ∈ L2}. The Kleene star operation on a language L1 is defined

as L∗
1 = {x1x2 . . . xk | k ≥ 0 and each xi ∈ L1} with ϵ ∈ L∗

1.

Definition 5. Let Σ be an alphabet. The regular expression (RE) over Σ and the languages

they denote are defined as follows.

• ∅ is a regular expression and L (∅) = ∅ the null set

• ϵ is a regular expression and L (ϵ) = {ϵ} the null string

• ∀a ∈ Σ, a is a regular expression and L(a) = {a}

• If R1 and R2 are regular expressions, R1+R2, R1R2, R
∗
1 are regular expressions such that

L(R1+R2) = L(R1) ∪ L(R2); L(R1R2) = L(R1) ◦ L(R2); L(R∗
1) is the Kleene star on

L(R1).

For example, the value of (ab+c)∗ is the language {ϵ, ab, c, cab, abc, abab, cc . . .}, which con-

tains all possible strings by attaching any number of ab or c.

The languages accepted by finite state machines are precisely the languages denoted by

regular expressions, since there always exists an FSA that accepts the language denoted by

any arbitrary regular expressions, and vice versa (see Hopcroft and Ullman, 1979, 29-34).

Besides the three regular operations, a generalized regular expression (GRE) also includes

R1 × R2 and R1 in its recursive definition, describing the intersection and complement op-

erations respectively. Specifically, L(R1 × R2) = L(R1) ∩ L(R2) and L(R1) = Σ∗ − L(R1).

Because regular languages are closed under intersection and complementation, generalized

regular expressions are equivalent to standard regular expressions in terms of their expres-

sivity.

To conclude, for any L ∈ Σ∗, L is regular iff ∃ an FSA M such that L(M) = L, iff ∃ an

RE r such that L(r) = L, iff ∃ a GRE r′ such that L(r′) = L.

16

For incorporating reduplication, we will introduce regular copying expressions (RCEs)

below by extending the standard definition of REs. However, proving the equivalence be-

tween the new computing device and regular copying expressions, we will take advantage of

generalized regular expressions, especially the expression denoting the intersection operation.

Details can be found in the following sections.

2.2 Regular Copying Expressions

The goal is to add copying to the set of operations whose closure defines regular languages

and examine the consequences of such addition. The method of treating copying as an

expression operator, adopted here, is not initiated in a vacuum. Several works touched on a

similar idea but restricted themselves to only copying finite languages. The ‘compile-replace’

system in Beesley and Karttunen (2000, 2003), intending to construct finite-state machinery

to generate reduplicated forms, uses a copying-like expression as the intermediate step. In

detail, it takes a lexical item w in a language L and creates an intermediate expression

of {w}^2 (more generally, {w}^n), denoting a fixed number of concatenations of w with

itself. Then, the system compiles this expression in run-time and outputs the surface string

form ww (more generally, ww . . . w with n many of ws). Importantly, the system only

operates on a finite L and thus targets bounded copying. Similarly, Hulden (2009), seeking

to model bounded copying in natural languages in finite-state machinery, mentions a regular

expression operator Copy(L), which takes a finite language L and outputs another finite

language L′ = ww when w is a string in L. 1

To describe languages involving unbounded copying and to examine their mathematical

1However, Hulden (2009) noticed that in natural languages, phonological changes complicate the issue
by introducing complex cases such as the partial prosodically governed reduplication found in Warlpiri. To
ultimately capture natural language reduplication elegantly, Hulden (2009) did not further pursue the COPY
operator but designed an EQ operator into finite-state calculus, which checks whether certain types of sub-
strings are equal in content. One of the main goals of this thesis is to analyze the formal properties of the
class of languages which involves copying. Thus, viewing reduplication “by way of string copying” suffices
for this purpose given it provides the desired class of languages. Finite-state buffered machines introduced
in the next section check sub-string identity and thus could potentially be extended to model phonological
complications as the next step.

17

properties, a regular copying expression incorporates a copying operation on some infinite

language, or precisely, regular languages. Definitions are as follows.

Definition 6. Let Σ be an alphabet. The regular copying expression (RCE) over Σ and the

languages they denote are defined as follows.

• ∅ is a regular copying expression and L (∅) = ∅

• ϵ is a regular copying expression and L (ϵ) = {ϵ}

• ∀a ∈ Σ, a is a regular copying expression and L(a) = {a}

• If R1 and R2 are regular copying expressions, R1+R2, R1R2, R1* are regular copying

expressions such that L(R1+R2) = L(R1) ∪ L(R2); L(R1R2) = L(R1) ◦ L(R2); L(R1*)

= (L(R1))*.

• (new copying operator) If R1 is a regular expression, RC
1 is a regular copying expression

and L(RC
1) = {ww |w ∈ L(R1)}

Regular copying expressions introduce two modifications to regular expressions. Firstly, a

RC expression operator for the copying-derived language is added. Then, the closure of other

recursive operations is extended to all regular copying expressions. Therefore, languages

denoted by regular copying expressions are closed under concatenation, union and Kleene

star. Secondly, the copying operation is only granted access to regular expressions, namely

to regular sets without copying operation applied previously. Another way of phrasing it

would be that the languages denoted by regular copying expressions are not closed under

copying, thus restricting the denoted languages by excluding copies of copies (w2n).

Given Σ∗ is a regular language, a RCE for the simplest copying language Lww = {ww|w ∈

Σ∗} with Σ = {a, b} would be ((a + b)∗)C . Assume Σ = {C, V }, a naive RCE describing

Agta plurals after CVC-reduplication without considering the rest of the syllable structures

could be (CV C)C(V + C)∗. This denotes a regular language, unlike ((a + b)∗)C . Note,

((CV C)C(V +C)∗)C is not a regular copying expression, because the copying operator cannot

apply to the expressions containing copying.

18

2.2.1 Closure: homomorphism

In this section, we prove the set of languages denoted by regular copying expressions are

closed under any homomorphisms. We begin with the definitions of a homomorphism and

inverse homomorphism.

Definition 7. A (string) homomorphism is a function mapping one alphabet to strings of

another alphabet, written h : Σ → ∆∗. We can extend h to operate on strings over Σ∗ such

that

1. h(ϵΣ) = ϵ∆

2. for w = a1a2 . . . an ∈ Σ∗, h(w) = h(a1)h(a2) . . . h(an) where each ai ∈ Σ

Definition 8. An alphabetic homomorphism h0 is a special homomorphism with h0 maps

each symbol in previous alphabet to another symbol in the new alphabet. In other words,

∀a ∈ Σ, h(a) ∈ ∆.

For example, h : {H,L} → {C, V }∗ with h(H) = CV C and h(L) = CV . Then,

h(LLH) = CV CV CV C. Let h0 : {p, a} → {C, V }∗ be an alphabetic homomorphism

with h0(p) = C and h0(a) = V . Then, h0(papa) = CV CV .

Additionally, we define the homomorphism h operation on a language, as well as the

inverse homomorphic image of a language.

Definition 9. Given a homomorphism h: Σ → ∆∗ and L1 ⊆ Σ∗, L2 ⊆ ∆∗, define h(L1) =

{h(w) |w ∈ L1} ⊆ ∆∗ and h−1(L2) = {w |h(w) = v ∈ L2} ⊆ Σ∗.

For example, let h : {H,L} → {C, V }∗ with h(H) = CV C and h(L) = CV . Then,

for a language L1 = {(LH)n |n ∈ N}, h(L1) = {(CV CV C)n |n ∈ N}. Given a language

L2 = {(CV)n(CV C)n}, h−1(L2) = {LnHn}.

Theorem 1. A language described by a regular copying expression is closed under homo-

morphism.

19

Proof. (adapted from Hopcroft and Ullman, 1979, 60) Assume an arbitrary L ⊆ Σ∗ is de-

scribed by some regular copying expression R1. Given an arbitrary homomorphism h : Σ →

∆∗, for each a ∈ Σ, ∃u ∈ ∆∗ such that h(a) = u. Select the regular copying expression for u

and assume it’s Ru. Replace each occurrence of a in the RCE R1 by Ru. After each symbol

in the alphabet is replaced, we can get another expression R2.

To prove R2 denote h(L(R1)), use proof by induction on the operations in R1. In the

inductive step, we only provide a complete proof showing the homomorphism of a copying

closure is the copying closure of the homomorphism. Proofs of the other three regular

operations follow the same idea.

• Base cases:

– R1 = ∅, L(R1) = ∅, then h(L(R1)) = ∅. Under construction, R2 = ∅.

Thus, L(R2) = h(L(R1))

– R1 = ϵ, L(R1) = ϵ, then h(L(R1)) = ϵ. Under construction, R2 = ϵ.

Thus, L(R2) = h(L(R1))

– ∃a ∈ Σ, R1 = a, L(R1) = {a}, then h(L(R1)) = {h(a)}. Under construction,

R2 = Ru and L(Ru) = {u} = {h(a)} . Thus, L(R2) = h(L(R1))

• Induction step: we assume L(r2) = h(L(r1)) holds for any regular copying expression r1

with less than n operators (n ≥ 1). Let us consider the case when R1 have n operators.

– If R1 = rC1 , L(R1) = {ww |w ∈ L(r1)}.

Now assume r2 is the regular copying expression after replacing each symbol

occurring in r1. By induction hypothesis, L(r2) = h(L(r1)). We also know R2 =

rC2 . Now, we are left to show L(R2) = h(L(R1))

h(L(R1)) = h({ww |w ∈ L(r1)})

= {h(ww) |w ∈ L(r1)}

= {h(w)h(w) |w ∈ L(r1)}

20

L(R2) = L(rC2)

= {ss | s ∈ L(r2)}

= {ss | s ∈ h(L(r1))}

= {h(w)h(w) |w ∈ L(r1)}

• Other cases (R1 = r1r2, R1 = r1 + r2, R1 = r∗1) follow the similar idea.

We conjecture that the set of languages denoted by regular copying expressions is not

closed under inverse homomorphism. Here, we provide a brief account and more detailed

discussions can also be found later. Consider the mildly context-sensitive language L =

{aibjaibj | i, j ≥ 0}. A regular copying expression denoting this language is (a∗b∗)C . Now,

with an alphabetic homomorphism h : {0, 1, 2} → {a, b}∗ such that h(0) = a, h(1) = a and

h(2) = b, the inverse homomorphic image of L is h−1(L) = {(0 + 1)i2j(0 + 1)i2j | i, j ≥ 0},

including the copying language {w2jw2j |w ∈ {0, 1}∗, j ≥ 0}. However, this set of strings

also includes non-identical symbol correspondences, such as 1202 and 11020002. h−1(L)

appears to beyond the abilities of regular copying expressions. The other operators fail

at the incurred crossing dependencies while the new copying operator only concerns with

identity.

21

2.3 Finite-State Buffered Machine

The aim of proposing a new computing device is to add reduplication to FSAs, implement

a copying mechanism and analyze the nature of such operation by deconstructing it into

indispensable components. The new formalism is finite-state buffered machines (FSBMs),

a summary of which is provided in Section 2.3.1. To avoid any potential confusion by

technical complications, we introduce the new formalism by first presenting the general

cases of finite-state buffered machines in Section 2.3.2. Examples are provided in later of

Section 2.3.2 to make the system concrete and comprehensible. To better understand the

copying mechanism, complete-path FSBMs are highlighted in Section 2.3.3. We present

that the languages recognized by FSBMs are precisely the languages recognized complete-

path FSBMs in Section 2.3.4. Section 2.3.5 scrutinizes the closure properties of the set of

languages defined by complete-path FSBMs, which should hold for the general cases.

2.3.1 Finite-state buffered machines in a nutshell

Finite-state buffered machines are two-taped automata with finite-state core control. One

tape stores the input, as in normal FSAs; the other serves as an unbounded memory buffer,

storing reduplicants temporarily for future string matching. Intuitively, a finite-state buffered

machine is an extension to finite-state registered machines (Cohen-Sygal and Wintner, 2006)

but equipped with unbounded memory. In theory, finite-state buffered machines with a

bounded buffer would be as expressive as a finite state registered automaton and therefore

can be converted to an FSA.

The buffer interacts with the input in restricted ways: 1) the buffer is queue-like; 2) the

buffer needs to work on the same alphabet as the input, unlike the stack in a pushdown

automaton (PDA), for example; 3) once one symbol is removed from the buffer, everything

else must also be wiped off before the buffer is available for other symbol addition. As it

turns out, these restrictions together ensure the machine will not generate string reversals

or other non-reduplicative non-regular patterns.

There are three possible modes for the newly proposed machine M when processing an

22

Figure 2.1: Mode changes and input-buffer interaction of an FSBM M on
“. . . abbababbab. . . ”. Assume M is armed with sufficient input consuming and symbol
matching apparatus. The machine switches to b mode to temporarily store symbols
in queue-like buffer. At the breaking point, it shifts to e mode for symbol matching
between what’s in the buffer and what’s in the input. After all symbols matched, the
buffer is emptied and the machine further switches to n mode.

input: 1) in normal (n) mode, M reads symbols and transits between states, functioning

as a normal FSA; 2) in buffering (b) mode, besides consuming symbols from the input and

taking transitions among states, it adds a copy of just-read symbols to the queue-like buffer,

until it exits buffering (b) mode; 3) after exiting buffering (b) mode, M enters emptying (e)

mode, in which M matches the stored symbols in the buffer against input symbols. When

all buffered symbols have been matched, M switches back to normal (n) mode for another

round of computation. Figure 2.1 provides a schematic diagram manifesting how the mode

of a machine alternates when it determines the equality of sub-strings and how the buffer

interacts with the input. Under the current augmentation, FSBMs can only capture local

reduplication with two adjacent, completely identical copies. It cannot handle non-local

reduplication, nor multiple reduplication.

So far, we have only introduced the basic characteristics and how different modes lead to

different actions and behaviors in a finite state buffered machine. Then, one question on hold

stands out: how does a machine know when to switch to which mode? The control of mode

changes in those machines will be easier to grasp after introducing the formal definitions;

details will be discussed later in this section.

23

2.3.2 Mathematical definitions and examples

Definition 10. A Finite-State Buffered Machine is a 7-tuple ⟨Σ, Q, I, F,G,H, δ⟩ where

• Q: a finite set of states

• I ⊆ Q: initial states

• F ⊆ Q: final states

• G ⊆ Q: states where the machine must enter buffering (b) mode

• H ⊆ Q: states requiring string matching and G ∩H = ∅

• δ: Q× (Σ ∪ {ϵ})×Q: the state transitions according to a specific symbol

Specifying G and H states allows a machine to control what portions of a string are

copied. To avoid intricacies, G and H are defined to be disjoint. In addition, states in H

identify certain special transitions. Transitions between two H states check input-memory

identity and consume symbols in both the input and the buffer. By contrast, transitions

with at least one state not in H can be viewed as normal FSA transitions. In all, there are

effectively two types of transitions in δ.

Definition 11. A configuration of an FSBM D = (u, q, v, t) ∈ Σ∗ × Q × Σ∗ × {n,b,e},

where u is the input string; v is the string in the buffer; q is the current state and t is the

current mode the machine is in.

Definition 12. Given an FSBM M and x ∈ (Σ∪ {ϵ}), u,w, v ∈ Σ∗, we define a configuration

D1 yields a configuration D2 in M (D1 ⊢M D2) as the smallest relation such that:

• For every transition (q1, x, q2) with at least one state of q1, q2 /∈ H

(xu, q1, ϵ, n) ⊢M (u, q2, ϵ, n) with q1 /∈ G “normal” actions

(xu, q1, v, b) ⊢M (u, q2, vx, b) with q2 /∈ G “buffering” actions

• For every transition (q1, x, q2) and q1, q2 ∈ H

(xu, q1, xv, e) ⊢M (u, q2, v, e) “emptying” actions

24

• For every q ∈ G

(u, q, ϵ, n) ⊢M (u, q, ϵ, b) mode-changing actions

• For every q ∈ H

(u, q, v, b) ⊢M (u, q, v, e) mode-changing actions

(u, q, ϵ, e) ⊢M (u, q, ϵ, n) mode-changing actions

Note that a machine cannot do both symbol consumption and mode changing at the

same time.

Definition 13. A run of M on w is a sequence of configurations D0, D1, D2 . . . Dm such

that 1) ∃ q0 ∈ I, D0 = (w, q0, ϵ, n); 2) ∃ qf ∈ F , Dm = (ϵ, qf , ϵ, n); 3) ∀ 0 ≤ i < m,

Di ⊢M Di+1. The language recognized by M is denoted by L(M), w ∈ L(M) iff there’s a run

of M on w.

In all illustrations, G states are drawn with diamonds and H states are drawn with

squares. The special transitions between H states are dashed.

Example 1. Total reduplication Figure 2.2 offers an FSBM M1 for Lww, with any

arbitrary strings made out of an alphabet Σ = {a, b} as candidates of bases.

q1Start q2 q3 Acceptϵ

a

b

ϵ

a

b

Figure 2.2: An FSBM M1 with G = {q1} and H = {q3}. L(M1) = {ww |w ∈
{a, b}∗}

For the rest of the illustration, we focus on the FSBM M2 in Figure (2.3a). M2 in

Figure (2.3a) recognizes the non-context free language {aibjaibj|i, j ≥ 1}. This language

can be viewed as total reduplication added to the regular language {aibj|i, j ≥ 1} (recognized

by the FSA M0 in Figure 2.3b). State q1 is an initial state and more importantly a G state,

forcing M2 to enter b mode before it takes any arcs and transits to other states. Then M2 in

b mode always keeps a copy of consumed symbols until it proceeds to State q4, an H state.

25

State q4 requires M2 to stop buffering and switch to e mode in order to empty the buffer by

checking for string identity. Using the special transitions between H states (in this case, a

and b loops on State q4), M2 checks whether the stored symbols in the buffer matches the

remaining input. If so, after emitting out all symbols in the buffer, M2 with a blank buffer

can switch to n mode. It eventually ends at State q4, a legal final state. Figure 2.4 gives

a complete run of M2 on the string “abbabb”. Figure 2.5 shows M2 rejects the non-total

reduplicated string “ababb” since a final configuration cannot be reached.

q1Start q2 q3 q4 Accepta

a

b

b

ϵ

a, b

(a) An FSBM M2 with G = {q1} and H =
{q4}; L(M2) = {aibjaibj |i, j ≥ 1}

q1Start q2 q3 Accepta

a

b

b

(b) An FSA M0 with L(M0)= {aibj |i, j ≥ 1}

Figure 2.3: An example FSBM and the corresponding FSA for the base language

Used Arc State Info Configuration

1. N/A q1 ∈ I (abbabb, q1, ϵ, n)
2. N/A q1 ∈ G (abbabb, q1, ϵ, b) Buffering triggered by q1 and empty buffer
3. (q1, a, q2) q2 /∈ G (bbabb, q2, a, b)
4. (q2, b, q3) (babb, q3, ab, b)
5. (q3, b, q3) (abb, q3, abb, b)
6. (q3, ϵ, q4) (abb, q4, abb, b) Emptying triggered by q4
7. N/A (abb, q4, abb, e)
8. (q4, a, q4) (bb, q4, bb, e)
9. (q4, b, q4) (b, q4, b, e)
10. (q4, b, q4) q4 ∈ H (ϵ, q4, ϵ, e) Normal triggered by q4 and empty buffer
11. N/A q4 ∈ F (ϵ, q4, ϵ, n)

Figure 2.4: M2 in Figure 2.3a accepts abbabb

26

Used Arc State Info Configuration

1. N/A q1 ∈ I (ababb, q1, ϵ, n)
2. N/A q1 ∈ G (ababb, q1, ϵ, b) Buffering triggered by q1 and empty buffer
3. (q1, a, q2) q2 /∈ G (babb, q2, a, b)
4. (q2, b, q3) q3 ∈ H (abb, q3, ab, b)
6. (q3, ϵ, q4) (abb, q4, ab, b) Emptying triggered by q4
5. N/A (abb, q4, ab, e)
6. (q4, a, q4) (bb, q4, b, e)
7. (q4, b, q4) q4 ∈ H (b, q4, ϵ, e) Normal triggered by q4 and empty buffer
8. N/A (b, q4, ϵ, n)

Clash

Figure 2.5: M2 in Figure 2.3a rejects ababb

q1Start q2 q3 q4 q5 Accept
b, t, k, ng, l i, a b, t, k, ng, l

b, t, k, ng, l

i, a

ϵ

b, t, k, ng, l

i, a

Figure 2.6: An FSBM M3 for Agta CVC-reduplicated plurals: G = {q1} and H =
{q4}

Example 2. Partial reduplication Assume Σ = {b, t, k, ng, l, i, a}, the FSBM M3 in

Figure 2.6 serves as a naive model of two Agta CVC reduplicated plurals in Table 1.1. Given

the initial state q1 is in G, M3 has to enter b mode before it takes any transitions. In b

mode, M3 transits to a plain state q2, consuming a consonant in input and keeping it in

the buffer. Similarly, M3 transits to a plain state q3 and then to q4. When M3 first reaches

q4, the buffer would contain a CVC sequence. q4, an H state, urges M3 to stop buffering

and enter e mode. Using the special transitions between H states (in this case, loops on

q4), M3 matches the CVC in the buffer with the remaining input. Then, M3 with a blank

buffer can switch to n mode at q4. M3 in n mode loses the access to loops on q4, as they

are available only in e mode. It transits to q5 to process the rest of the input by the normal

transitions between q5. A successful run should end at q5, the only final state. Figure 2.7

gives a complete run of M3 on the string “taktakki”. As illustrated by Figure 2.8, M3 rejects

27

Used Arc State Info Configuration

1. N/A q1 ∈ G (taktakki, q1, ϵ, n) Buffering triggered by q1 and empty buffer
2. N/A (taktakki, q1, ϵ, b)
3. (q1, t, q2) q2 /∈ G (aktakki, q2, t, b)
4. (q2, a, q3) (ktakki, q3, ta, b)
5. (q3, k, q4) q4 ∈ H (takki, q4, tak, b) Emptying triggered by q4
6. N/A (takki, q4, tak, e)
7. (q4, t, q4) (akki, q4, ak, e)
8. (q4, a, q4) (kki, q4, k, e)
9. (q4, k, q4) q4 ∈ H (ki, q4, ϵ, e) Normal triggered by q4 and empty buffer
10. N/A (ki, q4, ϵ, n)
11. (q4, ϵ, q5) (ki, q5, ϵ, n)
12. (q5, k, q5) (i, q5, ϵ, n)
13. (q5, i, q5) q5 ∈ F (ϵ, q5, ϵ, n)

Figure 2.7: M2 in Figure 2.6 accepts taktakki

Used Arc State Info Configuration

1. N/A q1 ∈ G (tiktakki, q1, ϵ, n) Buffering triggered by q1 and empty buffer
2. N/A (tiktakki, q1, ϵ, b)
3. (q1, t, q2) q2 /∈ G (iktakki, q2, t, b)
4. (q2, i, q3) (ktakki, q3, ti, b)
5. (q3, k, q4) q4 ∈ H (takki, q4, tik, b) Emptying triggered by q4
6. N/A (takki, q4, tik, e)
7. (q4, t, q4) (akki, q4, ik, e)

Clash

Figure 2.8: M2 in Figure 2.6 rejects tiktakki

the string with non-matching sub-string “tiktakki”.

2.3.3 The realization of the copying mechanism and complete-path FSBMs

The copying mechanism is realized by four essential components: 1) the unbounded mem-

ory buffer, which has queue storage; 2) three added modalities of the machine; 3) added

specifications of states urging the machine to buffer symbols into memory, namely states in

G; 4) added specifications of states urging the machine to empty the buffer by matching

sub-strings, namely states in H.

As shown in the definitions of configuration changes and the examples in 2.3.2, the

28

machine is supposed to end in n mode to accept an input. There are two possible scenarios

for a run to meet this requirement: either never entering b mode or undergoing full cycles of

n, b, e, n mode changes. Correspondingly, the resulting languages reflect either no copying

(functioning as plain FSAs) or full copying. The notion of “half-copying” is prohibited.

In any specific run, it is the states that inform a machineM of its modality. The first time

M reaches a G state, it has to enter b mode and keeps buffering when it transits between

plain states. The first time when it reaches an H state, M is supposed to enter e mode and

transit only between H states in e mode. Hence, it is clear that to go through full cycles of

mode changes, once M reaches a G state and switches to b mode, it has to encounter some

H states later to be put in e mode. Then the buffer has to be emptied for n mode at the

point when a H state transits to a plain state. A template for those machines performing

full copying can be seen in Figure 2.9.

Istart G H H F Accept

Mode record n n b e e n n.

(a) General cases: only one G state; two H states marking the start and end of string matching,
which could be the same.

Istart G H F Accept

Mode record n n b e n n.

ϵ

(b) The edge case without special transitions: when the copied item is an empty string, one
H would be enough, because after it puts the machine in e mode, the buffer is empty and the
machine could transit to n mode directly.

Figure 2.9: The template for the implementation of the copying in FSBMs. Key
components: G state, H states, transitions between H states, and strict ordering
between G and H. Solid lines represent a transition in one step. Dotted lines repre-
sent a sequence of normal transitions. Black dotted lines replace plain non-G non-H
states. H states in between H states are replaced by red dashed lines.

29

To allow us to reason about only the “useful” arrangements of G and H states, we

impose an ordering requirement on G and H states in a machine and define the completeness

restriction on a path as in Definition 15. While maintaining definitions of configurations and

configuration changes unchanged, we define those machines whose architecture has all paths

allowing the possibility of full-cycle mode changes to meet the completeness restriction.

Definition 14. A path from one state p to another state q in a machine is a sequence of

states p, p1, p2, p3, . . . pn, q such that there is a transition between two adjacent states in such

sequence.

Definition 15. A path s from an initial state to a final state in a machine is said to be

complete if

1. for one H state in s, there is always a preceding G state;

2. once one G state is in s, s must contain at least one H following that G state

3. in between G and the first H are only plain states.

Schematically, we use P to represent those non-G, non-H plain states (P = Q−(G∪H)).

Moreover, we represent initial, final states as I, F respectively. Then, the regular expression

denoting the state information in a path s should be of the form: I(P ∗GP ∗HH∗P ∗ + P ∗)∗F .

We further define a copying path to be guaranteed to trigger the full copying and rule out

the “no copying” case.

Definition 16. A path is said to be a copying path if it is complete and there is at least

one G state.

Definition 17. A complete-path finite-state buffered machine is an FSBM in which

all possible paths are complete.

The machine M1 in Figure 2.2, M2 Figure 2.3a and M3 in Figure 2.6 are illustrations of

complete-path finite-state buffered machines. For the rest of this section, we describe several

cases for an incomplete path in M , as further illustrated in Figure 2.10.

30

No H states When a G state does not have any reachable H state following it, there is

no complete run, since M always stays in b mode after the G state.

No H states in between two G states along a path When a G state q0 has to transit

to another G state q′0 before any H states, M cannot go to q′0, for M would enter b mode at

q0 while transiting to another G state in b mode is ill-defined.

H states first When M has to follow a path containing two consecutive H states before

any G state, there wouldn’t be a complete run, because only FSBMs in e mode can take the

transitions among two H states. However, it is impossible for M to enter e mode without

entering b mode enforced by some G state.

Istart G F Accept

Mode record n n b b.

(a) No H states

Istart G G

Mode record n n b ✗.

(b) No H states in between two G states along a path

Istart H H

Mode record n n n ✗.

(c) H states before G states

Figure 2.10: Possible paths in a machine failing on the completeness requirement.
Dotted lines represent a sequence of normal transitions. Dashed lines are special
transitions between H states in one step.

31

It should be emphasized that a machine M in n mode can pass through one (and only

one) H state to another plain state, because the relation between configurations for machines

in normal modes only requires at least one state to not be an H state. Then, some incomplete

paths could lead to non-empty languages, but those languages are still regular. For instance,

the language of the FSBM M4 in Figure 2.11 is equivalent to the language recognized by the

FSA in Figure 2.12. M4 remains to be an incomplete FSBM because it doesn’t have any G

state preceding the H states q2 and q4.

q1Start q2 q3 q4 q5 Accepta b

a

b

b

a

Figure 2.11: An incomplete FSBM M4 with G = ∅ and H = {q2, q4}; L(M4) =
{abba}

q1Start q2 q3 q4 q5 Accepta b b a

Figure 2.12: An FSA (or an FSBM with G = ∅ and H = ∅) whose language is
equivalent as M3 in Figure 2.11

32

2.3.4 The equivalence between general FSBMs and complete-path FSBMs

In this section, we argue that the languages recognized by FSBMs are precisely the languages

recognized by complete-path FSBMs. One key observation is the language recognized by the

new machine is the union of the languages along all possible paths. Then, the validity of such

a statement builds on different incomplete cases of G and H states along a path mentioned

in the previous section. Here, we provide a more direct and comprehensive analysis, listed in

Table 2.1 and it will be easy to construct a proof by cases. It can be noticed that only finite-

state buffered machine with at least one copying path uses the copying power and extends

the regular languages. Otherwise, finite-state buffered machine without any copying path is

equivalent to an FSA and the corresponding language is still in the regular set. On the other

hand, FSAs can be viewed as FSBMs without a copying path: they can be converted to an

FSBM with an empty G set, an empty H set and trivially no special transitions between H

states.

Cases complete copying resulting languages
|G| = 0, |H| = 0 ✓ ✗ regular

|G| ≥ 1, |H| = 0 ✗ ✗ L∅

|G| = 0, |H| ≥ 1 any adjacent H sequences ✗ ✗ L∅
no adjacent H ✗ ✗ regular

|G| ≥ 1, |H| ≥ 1 well-ordered as sequences of G...HH* ✓ ✓ copying-derived
ill-ordered cases ✗ ✗ L∅

Table 2.1: Different cases for G and H states along a path

33

2.3.5 Closure properties of complete-path FSBMs

In this section, we show closure properties of the languages recognized by complete-path

FSBMs. Noticeably, given complete-path FSBMs are finite-state machines with a copying

mechanism, the proof ideas in this section are similar to the standard proofs for FSAs, which

can be found in Hopcroft and Ullman (1979) and Sipser (2013).

2.3.5.1 Intersection with FSAs

Theorem 2. If L1 is a complete-path FSBM-recognizable language and L2 is a regular lan-

guage, then L1 ∩ L2 is a complete-path FSBM-recognizable language.

Proof. In other words, if L1 is a language recognized by a complete-path FSBM M1 =

⟨Q1,Σ, I1, F1, G1, H1, δ1⟩, and L2 is a language recognized by an FSAM2 = ⟨Q2,Σ, I2, F2, δ2⟩,

then L1 ∩ L2 is a language recognizable by another complete-path FSBM. It’s easy to con-

struct an intersection machine M where M = ⟨Q,Σ, I, F,G,H, δ⟩ such that

• Q = Q1 ×Q2

• I = I1 × I2

• F = F1 × F2

• G = G1 ×Q2

• H = H1 ×Q2

• ((q1, q
′
1), x, (q2, q

′
2)) ∈ δ iff (q1, x, q2) ∈ δ1 and (q′1, x, q

′
2) ∈ δ2

Paths in M would inherit the completeness from M1 given the current construction. Then,

L(M) = L1 ∩L2, as M simulates L1 ∩L2 by running M1 and M2 simultaneously. M accepts

w iff both M1 and M2 accept w. A detailed proof showing L(M) = L1 ∩L2 can be found in

the Appendix B.

34

Example An example demonstrating how the intersection works can be found in Fig-

ure 2.13. The FSA in Figure 2.13a recognizes the language whose strings have odd numbers

of bs, such as b, ababb and aabbababb. The FSBM in Figure 2.13b computes the language

after initial aa*b- copying, such as ababa, aabaabb, aaabaaabaaaa. The intersection FSBM

is shown in Figure 2.13c, which recognizes languages with both initial ‘aa*b-’ reduplication

and odd number of bs, such as ababb and aabaabaaaab.

To observe how the intersection FSBM achieves both restrictions at the same time, let

us look at its internal mechanisms more closely: the only initial state is (1, E), which is also

a G state. Therefore, the machine would be put in b mode. It stores any string w of the

form aa∗b in the buffer and reaches (3, O). This H state puts the machine in e mode to

further match the input with w in the buffer. The machine stays in the state (3, O) after

checking the aa∗ and transits to state (3, E) after checking the b. (3, E) keeps a record that

so far, the machine sees two bs. At state (3, E), the machine switches to n mode because of

an empty buffer. For the rest of the input, the machine transits between (4, O) and (4, E),

whose transitions are governed by the FSA transitions. The machine can only end at (4, O),

which marks an odd number of bs.

EStart O Accept

a a
b

b

(a) an FSA enforcing odd number of bs in a
string. State E and State O represent even, odd
number of bs in the prefix respectively

1Start 2 3 4 Accepta b

a a

b

a

b

a, b

(b) a complete-path FSBM recognizing ini-
tial ‘aa∗b’- identity. G = {1}, H = {3}

(1, E)Start

(1, O)

(2, E)

(2, O)

(3, O) (4, O) Accept

(4, E)(3, E)

a

a

b

a

a

b

a

a

bb

a

b b

a

a

a

bb

(c) the intersection FSBM after the construction: G = {(1, E), (1, O)}, H = {(3, O), (3, E)}.

Figure 2.13: An example for the intersection construction

35

2.3.5.2 Homomorphism

Theorem 3. The class of languages recognized by complete-path FSBMs are closed under

any homomorphisms.

Proof. That complete-path FSBM languages is closed under homomorphism can be proved

by constructing a new machine Mh based on the base machine M . The construction goes

as follows: relabel the odd arcs to mapped strings and add states to split the arcs so that

there is only one symbol or ϵ on each arc in Mh. When there are multiple symbols on any

normal arcs, the newly added states can only be plain non-G, non-H states. For multiple

symbols on the special arcs between two H states, all newly added states are H states. All

paths in Mh are complete since the construction does not affect the ordering between G and

H states.

Example Figure 2.14 is a simple instance of the construction of a new machine recog-

nizing the homomorphic image. Given Σ = {a, b, c} and h : Σ → {0, 1}∗, the base machine

recognizes a finite language {abab}. Even it contains a ‘c’ transition from q2 to q3; it is not

possible to recognize any strings with c because (q2, c, q3) is part of the copying, and there

is no special arcs with c for future string matching. To construct the new machine of the

homomorphism language, we relabel each arc with their mapped strings. The intermediate

representation is shown in Figure 2.14b. Then, after adding states and splitting each arc

when necessary, we get the result FSBM as in Figure 2.14c, which recognizes the singleton

language {10001000}.

2.3.5.3 Inverse homomorphisms?

We conjecture that the class of languages recognized by complete-path FSBMs is not closed

under inverse alphabetic homomorphisms and thus inverse homomorphism. Consider a

complete-path FSBM-recognizable language L = {aibjaibj | i, j ≥ 1} (see Figure 2.3a). Con-

sider an alphabetic homomorphism h : {0, 1, 2} → {a, b}∗ such that h(0) = a, h(1) = a and

h(2) = b. Then, the inverse homomorphic image of L is h−1(L) = {(0+1)i2j(0+1)i2j | i, j ≥

36

q1Start q2 q3 Accepta

b

c

a

b

(a) L(M) = {abab}

q1Start q2 q3 Accept10

00

01

10

00

(b) h(a) = 10, h(b) = 00, h(c) = 01. The in-
termediate step when the arcs are relabeled with
mapped strings

q1Start q′1 q2

q′2

q′′2

q3 Accept

q′3

q′′3

1 0

0

0

1

0
1

0

0

0

(c) States q′1, q
′
2, q

′′
2 , q

′
3, q

′′
3 are added to split the arcs. L(Mh) = {10001000}

Figure 2.14: Constructions used for the homomorphic language in Theorem 3.

1}, including 002002, 1202, 11020002. The language {w2jw2j |w ∈ {0, 1}∗, j ≥ 1} ⊂ h−1(L).

h−1(L) seems to be challenging for complete-path FSBMs: the finite-state core cannot handle

the incurred crossing dependencies while the augmented copying mechanism only contributes

to recognizing identical copies, but not general cases of symbol correspondence. 2

Even though we are pessimistic about inverse homomorphism closure property, analyzing

why it does not hold would hint at some (in-)capabilities of FSBMs. We suspect the pivotal

point comes from the one-to-many mapping. At first glance, one might want to try the

conventional construction of inverse homomorphism in FSAs in FSBMs and build a new

machine M ′
h, which reads any symbol a in the new alphabet and simulates M on h(a), as

shown in Figure 2.15.

However, it should be noted that such construction eventually yields under-generation:

the newly constructed FSBM still tracks the identity relation among symbols, which is

2However, we admit that a more formal and rigorous mathematical proof proving such language is not
FSBM-recognizable should be carried out. That’s why the current status of inverse homomorphism closure
is a conjecture. To achieve that, a more formal tool, like a developed pumping lemma for FSBM languages
is needed.

37

p1Start p2 p3 p4 p5 Accept1 0 0 1

(a) L(M) = {1001}

p1Start p2 p3 p4 p5 Acceptc

a

b

a

b

c

(b) h : {a, b, c} → {0, 1}∗ with h(a) = 0, h(b) = 0 and h(c) = 1. L(M ′
h) = {caac, cbbc} but

h−1(L) = {caac, cbbc, cabc, cbac}
.

Figure 2.15: Under-generation of the conventional construction of the inverse ho-
momorphic image

already obscured under the definition of inverse homomorphism. In the example in Fig-

ure 2.15, there are two regular copying expression that can result in the language {1001}:

1(0)C1 (with full copying) and 1001 (without copying but just concatenation).3 Namely,

inverse homomorphism would want a machine to be insensitive to such ambiguity and give

all possible base languages. However, under such construction , the resulting machine

is still sensitive to the identity relation. One might think another construction method,

which let FSBMs insensitive to the ambiguities of internal structures by including both the

copied interpretation and the non-copied interpretation, would get us around with the issue.

However, as we see from the potential counter-example, in the inverse homomorphic image

of a complete-path FSBM language, languages without copying could be beyond FSBM’s

capabilities.

Parallel multiple context-free grammars (Seki et al., 1991) adds unbounded copying to

multiple context-free grammars. The conjecture we maintain here is in line with the fact that

the family of parallel multiple context-free languages is not closed under inverse morphism

(Nishida and Seki, 2000, 145, Corollary 12).

3RCEs are used here to understand what is happening within the languages. No claims about the
relationship between RCEs and FSBMs have been made.

38

2.3.5.4 Three regular operations

Theorem 4. If L1, L2 are two complete-path FSBM-recognizable languages, then L1 ∪ L2,

L1 ◦ L2 and L∗
1 are also complete-path FSBM-recognizable languages.

Proof. Assume there are M1 and M2 such that L(M1) = L1 and L(M2) = L2, then . . .

Union L1 ∪ L2 is a complete-path FSBM-recognizable language. Assume M1 =

⟨Σ, Q1, I1, F1, G1, H1, δ1⟩ accept L1 while M2 = ⟨Σ, Q2, I2, F2, G2, H2, δ2⟩ accepts L2. One

can construct a new FSBM M that accepts an input w if either M1 or M2 accepts w.

M = ⟨Σ, Q, I, F,G,H, δ⟩ such that

• Q = Q1 ∪Q2 ∪ {q0}

• I = {q0}

• F = F1 ∪ F2

• G = G1 ∪G2

• H = H1 ∪H2

• δ = δ1 ∪ δ2 ∪ {(q0, ϵ, q′) | q′ ∈ (I1 ∪ I2)}

The construction of M keeps M1 and M2 unchanged, but adds a new plain state q0. q0 is

the only initial state, branching into those previous initial states in M1 and M2 with ϵ-arcs.

q0 is a non-G, non-H plain state. In this way, the new machine would guess on either M1 or

M2 accepts the input. If one accepts w, M will accept w, too.

q0Start

M1
... ...ϵ

ϵ

Accept

Accept

M2
... ...

ϵ
ϵ

Accept

Accept

Figure 2.16: The construction used in the union of two FSBMs

39

Concatenation there’s a complete-path FSBM M that can recognize L1 ◦L2 by the

normal concatenation of two automata. The new machine M = ⟨Σ, Q, I, F,G,H, δ⟩ satisfies

L(M) = L1 ◦ L2

• Q = Q1 ∪Q2 ∪ {q0}

• I = {q0}

• F = F2

• G = G1 ∪G2

• H = H1 ∪H2

• δ = δ1 ∪ δ2 ∪ {(pf , ϵ, qi) | pf ∈ F1, qi ∈ I2} ∪ {(q0, ϵ, pi) | pi ∈ I1}

The new machine adds a new plain state q0 and make it the only initial state, branching

into those previous initial states in M1 ϵ-arcs. q0 is not in H, nor in G. All final states in M2

are the only final states in M . Besides, M adds ϵ-arcs from any old final states in M1 to any

possible initial states in M2. The completeness obeying feature is inherited. A path in the

resulting machine is guaranteed to be complete because it is essentially the concatenation of

two complete paths.

q0Start M1
... ...

ϵ

ϵ
M2

... ...
Accept

Accept

ϵ

ϵ
ϵ

ϵ

Figure 2.17: The construction used in the concatenation of two FSBMs

It is important to obey the completeness requirements and ensure n mode when it gets

the end of M1. Incomplete paths in two arbitrary machines might create a perfect copying

path, thus over-generating under the construction of concatenation mentioned here. For

example, as illustrated in Figure 2.18, imagine one path in M1 only has G states but no H

states, and another path in M2 starts with consecutive H states. They both recognize the

empty set language L∅ = ∅. Therefore, the concatenation of these two languages should also

40

be L∅. However, under the construction discussed previously, the new machine might create

some non-empty copying languages.

I1start G F1 Accept

(a) An incomplete-path without H states; the language along this path ∅

I2start H H F2 Accept

(b) An incomplete-path without G states; the language along this path is ∅

I1start G F1 I2 H H F2 Acceptϵ

(c) Concatenation of two incomplete-path might lead to a copying path and result in a non-
empty language

Figure 2.18: Problems arise in the concatenation of two incomplete paths. Dotted
lines represent a sequence of normal transitions. Red dashed lines represent a se-
quence of special transitions

The over-generation issue is tied with the construction method, but not the closure of con-

catenation. A different concatenation construction would resolve the problem. For example,

only concatenate when two paths are complete. Again, since general finite-state buffered

machines are equivalently expressive as complete-path finite-state buffered machines, the

properties hold for the set of complete-path FSBM-recognizable languages would still hold

for the most general cases.

41

Kleene Star (L1)
∗ is a complete-path FSBM-recognizable language. The new ma-

chine M = ⟨Σ, Q, I, F,G,H, δ⟩ satisfies L(M) = (L1)∗

• Q = Q1 ∪ {q0}

• I = {q0}

• F = F ∪ {q0}

• G = G1

• H = H1

• δ = δ1 ∪ {(pf , ϵ, qi) | pf ∈ F1, qi ∈ I1} ∪ {(q0, ϵ, qi) | qi ∈ I1}

M is similar to M1 with a new initial state q0. q0 is also a final state, branching into old

initial states in M1. In this way, M accepts the empty string ϵ. q0 is never a G state nor

an H state. Moreover, to make sure M can jump back to an initial state after it hits a final

state, ϵ transitions from any final state to any old initial states are added. The completeness

obeying feature is inherited.

q0Start M1
... ...

ϵ

ϵ

ϵ

ϵ

ϵ

ϵ

Accept

Accept

Accept

Figure 2.19: The construction used in the star operation

42

2.4 The equivalence between RCEs and FSBMs

Section 2.2 introduced regular copying expressions, while in Section 2.3, we proposed another

computing device: finite-state buffered machines. This section shows they are equivalent

in terms of the expressivity: namely, the languages accepted by FSBMs are precisely the

languages denoted by RCEs. We prove this statement in two directions: 1) every RCE has a

corresponding FSBM; 2) every language recognized by FSBMs can be denoted by an RCE.

2.4.1 RCE to FSBM

Theorem 5. Let R be a regular copying expression. Then, there exists an FSBM that

recognizes L(R).

Proof. We complete our proof by induction on the number of operators in R.

Base case: zero operators R must be ϵ, ∅, a for some symbol a in Σ. Then, the

FSBMs in Figure 2.20 meet the requirements.

Start Accept

(a) R = ϵ

Start

(b) R = ∅

Start Accepta

(c) R = a

Figure 2.20: FSBMs for the base step in Theorem 5. All have G = ∅;H = ∅

Inductive step: One or more operators In induction, we assume this theorem holds

for RCEs with less than n operators with n ≥ 1. Let R have n operators. There are two

cases: 1): R = RC
1 ; 2): R ̸= RC

1 ;

• Case 1: R = RC
1 . Then, we know R1 must be a regular expression and we can construct

an FSA for R1. Assume there’s an FSA M0 = ⟨Q′,Σ, I ′, F ′, δ′⟩ that recognizes L(R1).

Let M = ⟨Q,Σ, I, F, δ, G,H⟩ with

– Q = Q′ ∪ {q0, qf}

– G = I = {q0}

– H = F = {qf}

43

– δ = δ′ ∪ {(qf , x, qf) |x ∈ Σ } ∪{(q0, ϵ, q) | q ∈ I ′ } ∪{(q, ϵ, qf) | q ∈ F ′ }

As part of this construction, we add another initial state q0 and a final state qf and use

them as the only initial and final states in the new machine. We add ϵ-arcs 1) from the

new initial state q0 to the previous initial states, and 2) from the previous final states

to the new final state qf . The key component is to add the copying mechanism: G, H,

and special arcs. Let G contain only the initial state q0, which would put the machine

to b mode before it takes any transitions. Let H contain only the final state qf , which

stops the machine from buffering and sends it to string matching. Adding loops of all

symbols in Σ between qf (thus, between H states) creates all possible strings out of

Σ and eventually contain all strings in L(R1). Thus, if w is in L(R1), ww must be in

the language accepted by this complete-path FSBM and nothing beyond. Figure 2.21

shows such a construction, and Appendix C provides the proof for L(M) = L(R).

q0Start qf AcceptM0
... ...

ϵ

ϵ

ϵ

ϵ

Σ

Figure 2.21: The construction used in converting the copy expression RC
1 to a finite

state buffered machine. L(M0) = L(R1).

• Case 2: when R ̸= RC
1 for some R1, we know it has to be made out of the three

operations: for some R1 and R2, R = R1 + R2, or R = R1R2 or R = R∗
1. Because

R1 and R2 have operators less than i, from the induction hypothesis, we can construct

FSBMs for R1 and R2 respectively. Using the constructions in Theorem 4, we can

construct the new FSBM for R.

44

2.4.2 FSBM to RCE

Theorem 6. If a language L is recognized by an FSBM, then L could be denoted by a RCE.

Instead of diving into proof details, we introduce the most crucial fragments to the

full FSBM-to-RCE conversion: how the copying mechanism in a complete-path FSBM is

converted into a copy expression. We leave out parts that use basic ideas of FSA-to-RE

conversion, which can be found in Hopcroft and Ullman (1979, 33-34).

The previous discussion on the realization of the copying mechanism in complete-path

FSBMs concluded with four aspects 1) the specification of G states, 2) the specification of H

states, 3) the special transitions between H states, and 4) the completeness restriction which

imposes ordering requirements on G and H. Thus, to start with, we want to concentrate on

the areas selected by G states and H states in a machine, as they are closely related to the

copying mechanism.

The second stage of copying (i.e., the string matching, or buffer-emptying) only uses

special transitions among H states. Therefore, let us further zoom in to the areas with all

H states. Intuitively, we want to find the borderlines where the machine first reaches an H

state and ends with another (or the same) H state. So we need first to select those border

states adjacent to some non-H states. For any pairs of border H states and the transitions

in between, it can be treated as a small FSA abstractly since there is no complete notion

of copying yet. Following this vein, utilizing the FSA-to-RE conversion produces a regular

expression R1 denoting the languages between any two H states on the border.

After tallying up all languages that are candidates of string matching, we switch our

scope to G states, which marks the beginning of the copying and the beginning of symbol

buffering. The core is the same: for any G and borderline H pair, if they do not cross

other H states, borrow the FSA-to-RE conversion to get a regular expression R2 denoting

the languages possible to be stored in the buffer temporarily. If they have to cross other H

states, this borderline H does not immediately follow that G state and we would put down

∅ for now.

The most essential step is to combine what we have: given pairs of 1) G and border Hs

45

and 2) pairs of border Hs, the language produced by any G,H1, H2 sequence is the copy of

the intersection of the languages betweenH1, H2 (R1) and the languages between G,H1 (R2).

In other words, the copying for any G,H1, H2 sequences would be equivalent to (R1 ×R2)
C .

Although the definition of a regular expression does not contain an intersection operation,

since generalized regular expressions with the closure of intersection are equivalently expres-

sive as regular expressions, there must be a regular expression R3 = R1×R2. Therefore, the

RCE is just RC
3 .

Importantly, there are only finitely many (G,H1, H2) tuples. Iterating through all pos-

sible intermediate border H1 states and getting a general RCE R by the union, we use two

plain states with the RCE R along the arc to denote the languages from G to H2. Then we

plug them back to the starting FSBM. Note that all special transitions are also eliminated.

Then, we get an intermediate representation with only plain states. Similar ideas as FSA-

to-RE conversion could be applied again to get the final regular copying expression for this

FSBM.

The described conversion of the copying mechanism in a machine to a copy expression is

depicted in Figure 2.22 with an example provided in Figure 2.23.

G H1 H2
R2 R1

(a) Goal for the possible (G,H1, H2) in the
first steps of the FSBM-to-RCE conversion

P P
(R1 ×R2)

C

(b) Next step after having the goal in Figure
2.22a

Figure 2.22: The conversion of the copying mechanism in an FSBM to RCE. P
represents the plain, non-H, non-G states

46

q0Start

q1Start

q2

q3

q4

q5

q6

q7

q8

q9

q10

q11

q12

q13 Accept

q14 Accepta

a

c

b

a

c

a

a

c

a

b

c

a

c

b

b

c

ϵ

ϵ

a

a

ϵ

(a) An FSBM to start with. G = {q2, q3, q10}; H = {q6, q7, q8, q9, q11, q12}

“border” H pairs RE “border” H pairs RE “border” H pairs RE “border” H pairs RE “border” H pairs RE
(q6, q6) b* (q7, q6) c*bb* (q12, q6) ∅ (q8, q6) ∅ (q11, q6) ∅
(q6, q7) ∅ (q7, q7) c* (q12, q7) ∅ (q8, q7) ∅ (q11, q7) ∅
(q6, q8) b*a (q7, q8) c*bb*a (q12, q8) ∅ (q8, q8) ∅ (q11, q8) ∅
(q6, q11) ∅ (q7, q11) c*cb*c (q12, q11) ∅ (q8, q11) ∅ (q11, q11) ∅
(q6, q12) ∅ (q7, q12) ∅ (q12, q12) a* (q8, q12) ∅ (q11, q12) ∅

(b) “border” H pairs and the corresponding REs

(G, “border” H) pairs RE (G, “border” H) pairs RE (G, “border” H) pairs RE
(q2, q6) ba*a (q3, q6) aa*a (q10, q6) ∅
(q2, q7) ∅ (q3, q7) ca*c (q10, q7) ∅
(q2, q8) ∅ (q3, q8) ∅ (q10, q8) ∅
(q2, q11) ∅ (q3, q11) ∅ (q10, q11) ∅
(q2, q12) ∅ (q3, q12) ∅ (q10, q12) a

(c) (G, “border” H) pairs and the corresponding REs

(G, H, H) RCE (G, H, H) RCE (G, H, H) RCE
(q3, q6, q6) (aa*a×b*)C (q2, q6, q6) (ba*a×b*)C (q10, q12, q12) (a×a*)C

(q3, q6, q8) (aa*a×b*a)C (q2, q6, q8) (ba*a×b*a)C

(q3, q7, q6) (ca*c×c*bb*)C

(q3, q7, q7) (ca*c×c*)C

(q3, q7, q8) (ca*c×c*bb*a)C

(q3, q7, q11) (ca*c×c*cb*c)C

(d) (G, H1, H2) tuples and the corresponding RCEs

q0Start

q1Start

q2

q3

q6

q7

q8 q10

q11

q12

q13 Accept

q14 Accept

a

a

c

(ba*a×b*)C

(ba*a×b*a)C

ϵ (a×a*)C ϵr1

r2

r3

(ca*c×c*cb*c)C ϵ

(e) The resulting intermediate representation to be fed in the FSA-to-RE conversion; r1 =
r(q3,q6,q6) + r(q3,q7,q6); r2 = r(q3,q6,q8) + r(q3,q7,q8); r3 = r(q3,q6,q7) + r(q3,q7,q7)

Figure 2.23: An example conversion of the copying mechanism to a copy expression
47

2.5 Regular + copying languages

The previous section proves the equivalence between regular copying expressions and FSBMs

in their descriptive powers. Given such equivalence, we define the class of regular+copying

languages (RCLs) as follows.

Definition 18. A language is in the class of regular+copying languages if and only if some

regular copying expression denotes it, and equivalently if and only if some FSBMs recognizes

it.

Table 2.2 is a summary table on the closure properties of such language class surveyed

so far.

Operations Closed or not
union ✓
concatenation ✓
Kleene star ✓
homomorphism ✓
intersection with regular languages ✓
inverse homomorphism ✗?
Copy(L) ✗

Table 2.2: Surveyed closure properties of RCLs

48

CHAPTER 3

The linguistic relevance of the formal methods

Chapter 2 introduced the formal tools to define regular + copying set of languages and its

closure properties. This chapter shows the linguistic relevance of two of its closure properties:

closed under intersection with regular languages and closed under homomorphism.

3.1 Closed under intersection with regular languages

That FSBM-recognizable languages are closed under intersection with regular languages is

the first step in relating FSBMs as a formal model with theoretical phonological theory.

Assume a natural language X imposes one requirement, saying X cannot have adjacent

consonant clusters, which can be modeled by an FSA M∗CC . In addition, this language

also requires phonological strings of specific forms to be reduplicated, which can be modeled

by an FSBM MRED. One at this moment can construct another FSBM MRED×∗CC , which

would yield to a set of strings without any consonant clusters and with the total identity of

sub-strings in those forms. Not limited to consonant vowel distributions, phonotactics other

than identity of sub-strings are also regular (Heinz, 2018), indicating almost all phonological

well-formedness knowledge can be modeled by FSAs. When FSBMs intersect with FSAs

computing those phonotactic restrictions, the resulting formalism is still an FSBM but not

other grammar with higher computation power. Thus, FSBMs should be sufficient to com-

pute natural language phonotactics once including recognizing surface sub-string identity.

This closure property is also closely related to implement Optimality Theory. Classic Op-

timality Theory (Smolensky and Prince, 1993) itself contains three basic components. Gen

takes an input and generates a (infinite) set of possible output candidates. Con provides

49

a set of constraints, which itself consists of two different types of constraints: markedness

constraints encoding phonological well-formedness knowledge are restrictions solely on sur-

face forms themselves; faithfulness constraints enforces a relation between input and output

of the grammar, based on the correspondence among input and output symbols. Eval

picks out the optimal candidate as the output according to the constraints. It is commonly

accepted that finite-state methods can be used to model both markedness constraints and

faithfulness constraints. Moreover, OT-wise, a finite state machine can represent all possible

surface candidates generated by Gen (Ellison, 1994; Eisner, 1997; Albro, 1998). The eval-

uation procedure Eval is achieved by an iterative intersection of the machine representing

the set of candidates with every constraint.

Then, two possible directions of plugging the new machine to the implementation of Op-

timality Theory emerge to include reduplication. Firstly, if speakers’ knowledge of phonolog-

ical well-formedness ever contains surface sub-string identity, FSBMs can be used to model

such requirement.1 Secondly, following Albro (2000), FSBMs can be used as the represen-

tation of the candidate set enforcing reduplicative identity and iteratively intersect with

finite-state machines representing the constraints. To fully achieve this goal, future work

should consider developing an efficient algorithm that intersects complete-path FSBMs with

weighted FSAs. To conclude, plugging FSBMs in the implementation of OT can either take

constraints beyond regularity, or take candidate sets beyond regularity, or both. Now, it is

inconclusive whether FSBMs are closed under intersection. If FSBMs are not closed under

intersection, it seems at least one regularity assumption should be kept and taking both

constraints and candidate sets beyond regular seems to be impossible.

3.2 Closed under homomorphism

The fact that FSBMs are closed under homomorphism allows theorists to perform analyses

at a certain levels of abstraction of certain symbol representations. Consider two alphabets

1Again, we are not making any theoretical claims about whether phonology should include such require-
ment or not, but more from a more modeling perspective.

50

q1Start q2 q3 q4 q5 AcceptC V C

C

V

ϵ

C, V

(a) An FSBM M4 on the alphabet {C, V } such that L(M4) = h(L(M2)) with M2 in Figure 2.6

q1Start q2 q3 q4 q5 Accept

b
t

k
ng
l

a

i

b
t

k
ng
l

b, t, k, ng, l

i, a

ϵ

b, t, k, ng, l

i, a

(b) An FSBM M5 on the alphabet {b, t, k, ng, l} such that L(M4) recovers the pattern of M2 in
Figure 2.6

Figure 3.1: The linguistic relevance of the closure under homomorphism

Σ = {b, t, k, ng, l, i, a} and ∆ = {C, V } with an alphabetic homomorphism h mapping every

consonant (b, t, k, ng, l) to C while every vowel (i, a) to V . As illustrated by M2 on alphabet

Σ (Figure 2.6) and M4 on alphabet ∆ (Figure 3.1a), FSBM-definable patterns on Σ would

be another FSBM-definable patterns on ∆.

It should be noted that it is highly possible that FSBM languages are not closed under

inverse homomorphism. However, the set of regular languages is closed under inverse homo-

morphism. Given an FSA, one can let each symbol in the domain of the homomorphism to

simulate the mapped string and construct a new machine for the inverse homomorphic lan-

guage. Even if applying this construction to FSBMs does not produce the desired language,

such a construction could be practical and useful as it keeps track of the identity relation

among segments. For example, given the FSBM in 3.1a, the resulting machine under the

described construction is shown in 3.1b. The previous machine accepts the surface forms

with the prefix C1V1C2C1V1C2−. Then, the resulting machine keeps the identity relation

in the previous machine and never recognizes the concatenation of two arbitrary CVCs, or

C1V1C2C3V2C4−. In other words, the resulting machine only recognizes prefixes such as

babbab− but never babkak−, nor kablil− which is in the inverse homomorphic image.

51

CHAPTER 4

Discussion

The first two formal questions raised in Chapter 1 were answered in Chapter 2. This Chapter

attempts to answer the third question: how much can finite-state buffered machines and

regular copying expressions explain or model the typology of reduplication? Or how does

regular + copying languages align with natural language patterns? Under current definitions,

regular + copying languages show some limitations on the typology of reduplication. It only

contains local reduplication with two adjacent, completely identical copies. It cannot handle

non-local reduplication nor multiple reduplication. However, with some modifications, finite-

state buffered machines or regular copying expressions as models for the whole typology

should be possible. This section discusses some possible modifications without rigorously

exploring what outcomes those modifications bring to the closure properties. We leave this

area for future research.

4.1 Typology of reduplication

4.1.1 Non-local Reduplication

Non-local reduplication is when the surface phonological strings have non-adjacent copies,

which incurs non-local correspondence among symbols. A more comprehensive typology and

linguistic analysis on non-local reduplication can be found in Riggle (2004). Examples from

Chukchee are shown in Table 4.1. As Bogoras (1969, 688, 690) described, the absolute form

of a noun occupies the subject of an intransitive verb and the object of transitive verb and

“dissyllabic words repeat the first syllable at the end of the word”.

Currently, FSBMs are unable to capture non-local reduplication with intervening seg-

52

Non-local reduplication: Chukchee absolutive singular (Bogoras, 1969, 60)
Gloss Stem absolute
‘voice’ quli quli-qul
‘tears mêrê mêrê-mêr
‘land’ nute nute-nut

Table 4.1: Chukchee absolutive singular: copies the first CVC sequence to the end
of the word

ments. The problem comes from the requirement in which a b mode has to be directly

followed by an e mode, and a filled buffer is not allowed in n mode. Then, the modifica-

tion should be straightforward: FSBMs need to allow the buffer filled in n mode or another

newly-defined memory holding mode, and match strings when needed. These revisions can

be achieved by letting G pick out another area of a machine, as H does in the current FS-

BMs. Specifically, the transitions are unique among two G states in that they can only be

used in b mode. Those transitions consume symbols in the input tape and buffer symbols

in the queue-like buffer. Then, if there is no adjacent H following the end of buffering, the

machine can use plain transitions to plain states for only input symbols. The buffer with

symbols in it should be kept unchanged. Ultimately, the machine has to encounter some H

states to empty the buffer to accept the string, since no final configuration allows symbols

on the buffer.

4.1.2 Multiple Reduplication

Multiple reduplication refers to the cases when two or more different reduplicative patterns

appear in one word. One string can have multiple sub-strings identical to each other. Ex-

amples from Thompson, a Salish language, are listed in Table 4.2.

While the computational nature of multiple reduplication in natural language phonology

and morphology remains an open question, the machines can easily be modified to include

multiple copies of the same base form ({wn |w ∈ Σ∗, n ∈ N}). Given n, FSBMs can be

granted with the freedom of not consuming buffered symbols in string matching e mode until

the last nth sub-string is emitted. On the other hand, FSBMs cannot be easily modified to

53

multiple reduplication: Thompson (Broselow, 1983, 329)
Gloss Strings
calio sil
dim-calico śı-sil
dist-calico sil-śıl
dist-dim-calico sil-śı-sil

Table 4.2: Multiple reduplication in Thompson

recognize the language containing copies of the copies ({w2n |w ∈ Σ∗, n ∈ N}). To capture

both cases in multiple reduplication, modifications in RCEs are relatively easy. For multiple

copies of the same base, L(Rc) = {wn |w ∈ Σ∗, n ∈ N}; as for copies of copy, Rc should no

longer apply to only regular expressions, but can apply to a regular copying expression.

The copy language Lww is midly context-sensitive. It remains inconclusive whether hu-

man languages contain w2n , a non-semilinear language in context-sensitive languages but not

mildly context-sensitive. Joshi (1985) argues for a mildly context-sensitive upper bound for

natural language syntax. For copying in the syntactic domain, Stabler (2004) differentiates

a generating grammar (MCS grammars) from a copying grammar (beyond MCS). In gener-

ating grammars, both copies are generated step by step, while copying grammars copy some

part of the structure in one step. Following Joshi (1985), Stabler (2004) examines different

crossing dependencies in natural languages and argues for the generating account. On the

other hand, Clark and Yoshinaka (2014) developed learning algorithms for a specific copying

grammar, parallel multiple context-free grammars (pMCFGs), and claims that copying in

“a full explanation of acquisition” may be equivalent as pMCFGs, not MCFGs (Clark and

Yoshinaka, 2014, 13). One of the most suggestive pieces of evidence in natural languages

is from Kobele (2006). It discusses the copying account of the serial verb construction in

Yoruba relative clauses, which may itself include copied structures, thus challenging the

MCS hypothesis. It would be advantageous for future research to undertake empirical and

theoretical investigations regarding the nature of multiple reduplication in natural languages

and the MCS hypothesis.

54

4.1.3 Reduplication with non-identical copies

In natural languages, further phonological processes complicate the issue by resulting in non-

identical copies. As illustrated in Table 4.3, whole stems are copied in Javanese habitual

forms. However, the first half of the reduplicated strings use [a] in place of the vowel in the

last syllable.

Non-identical copies: Javanese Habitual Repetitive (Yip, 1995, 249)
Gloss root Habitual Repetitive
‘remember’ eliN elaN-eliN
‘buy’ tuku tuka-tuku
‘bad’ eleP elaP-eleP

Table 4.3: Non-identical copies in Javanese

In terms of recognizing non-identical copies, we can allow the machine to either store or

empty not exactly the same input symbols, but mapped symbols according to some function

f .1 Under this modification, the new automata would recognize {anbn |n ∈ N} with f(a) = b

but still exclude string reversals. However, after this modification, the set of languages would

also include {aibjcidj | i, j ≥ 1} with f(a) = c, f(b) = d.

1Thanks to a reviewer of the 18th SIGMORPHON workshop for suggesting this idea.

55

CHAPTER 5

Conclusion

This thesis provides new formal methods to compute unrestricted total reduplication on

any regular languages, including the simplest copying language Lww where w can be any

arbitrary string of an alphabet. Two angles taken are 1) including copying as an expression

operator and defining regular copying expressions; 2) proposing a new computational device:

finite state buffered machines, which adds copying to regular languages. Eventually, regular

copying expressions and finite-state buffered machines are proved to be equivalent in terms

of the class of languages they describe. As a result, they introduce a new class of languages

incomparable to context-free languages, named regular+copying languages.

This class of languages extends regular languages with unbounded copying but exclude

non-reduplicative non-regular patterns: we hypothesize context-free string reversals are ex-

cluded since the buffer is queue-like. Meanwhile, the mildly context-sensitive Swiss-German

cross-serial dependencies, abstracted as {aibjcidj|i, j ≥ 1}, is also excluded, since the buffer

works on the same alphabet as the input tape and only matches identical sub-strings.

In this thesis, we also surveyed the closure properties. The regular + copying set is closed

under union, concatenation, Kleene Star, homomorphism, and intersection with regular lan-

guages. It is not closed under copying, inhibiting the recursive application of copying and

excluding non-semilinear w2n . We conjecture this class is not closed under inverse homomor-

phism, given it cannot recover the possibility of non-identity among corresponded segments

when the mapping is many-to-one (and the inverse homomorphic image is one-to-many). Fu-

ture works can look more into providing a pumping lemma in FSBMs to better understand

what languages do not belong to regular + copying languages.

Automata-wise, following the breakthrough of sub-classes of 2-way FSTs in Dolatian and

56

Heinz (2018a,b, 2019, 2020), which successfully capture unbounded copying as functions

while exclude mirror image mappings, finite-state buffered machines successfully capture the

total-reduplicated stringsets while exclude string reversals. One potential direction of future

research is to connect FSBM with the studied 2-way FST account. We briefly mention two

possibilities following this line. Firstly, a comparison between the characterized languages

in this thesis and the image of functions in Dolatian and Heinz (2020) should be carried out

to build the bridges. Secondly, one can add another tape for output strings and extend FS-

BMs as acceptors to finite-state buffered transducers (FSBTs). The morphological analysis

(ww → w) problem is claimed to be difficult for 2-way FSTs, since deterministic 2-way FSTs

are not invertible. Our intuition is FSBTs would help solve this issue: after reading the first

w in input and buffering the string in memory, the machine can output ϵ for each matched

symbol when transiting in between H states. Again, a more detailed and rigorous analysis

should be conducted.

Another promising area of research is to extend Primitive Optimality Theory (Eisner,

1997; Albro, 1998) as Albro did. Albro (2000) maintains weighted finite state machine as

the constraints while represents sets of candidates using multiple context-free Grammars to

enforce base-reduplicant correspondence (McCarthy and Prince, 1995). Then, the goal here

is to computationally implement reduplication in finite-state buffered machines without the

full power of mildly context-sensitive languages, compared to the employed multiple context-

free languages in Albro (2000, 2005). To fully achieve this goal, an efficient algorithm that

intersects complete-path FSBMs with weighted FSAs is necessary.

Last but not least, as discussed in Section 4, the current class of languages excludes non-

adjacent copies, multiple reduplication and reduplication with non-identical copies, which

are attested in natural languages. Investigations on how to modify corresponding models and

what changes those modifications bring should be the next step to complete the typology.

57

APPENDIX A

Mathematical preliminaries

Sets and set operations A set is a collection of distinct objects as its elements. That

an object a is an element of a set A is denoted by a ∈ A. The symbol /∈ denotes non-

membership. The number of elements in a set A is called the cardinality of A, written |A|.

A set A is finite if and only if (iff) there exists some natural number k such that A has

exactly k many elements, as |A| = k. One finite set of special interests is the set with no

elements, or the empty set ∅. It’s easy to see |∅| = 0. Conversely, if A contains infinitely

many elements, A would be an infinite set and no such natural number k could describe the

cardinality of A.

Different ways to describe a set can ultimately lead to the same set. For example,

{2, 4, 6, 8} and {x |x is even and 0 < x < 10} are different specifications but include exactly

the same elements. Two sets A and B are equal, or A = B, iff they contain exactly the

same elements. So {2, 4, 6, 8} = {x |x is even and 0 < x < 10}. Phrasing the equality of two

sets in another way, A = B if two conditions holds: 1): for every x, if x ∈ A, then x ∈ B;

2): for every x, if x ∈ B, then x ∈ A. If every element of a set A is an element of a set

B, then A is a subset of B, denoted as A ⊆ B. Thus, we see proving A = B is equivalent

as proving 1) : A ⊆ B and 2) : B ⊆ A. In nature, many proofs in this thesis are proving

two sets are equal and relies on proving the subset relations in both directions. Moreover,

based on the definition of the subset relation, a set can be a subset of itself. A is a subset

of B and not equal to B, A is said to be a proper subset of B, written as A ⊂ B. Moreover,

the usual operations of union, intersection, difference, Cartesian product and powerset are

58

defined below.

A ∪B =def {x |x ∈ A or x ∈ B} union

A ∩B =def {x |x ∈ A and x ∈ B} intersection

A−B =def {x |x ∈ A and x /∈ B} difference

A×B =def {⟨a, b⟩ | a ∈ A and b ∈ B} Cartesian product

P(A) =def {X |X ⊆ A} powerset

Relations and functions A binary relation on sets A and B is a subset of A × B. A

function f from its domain A to its co-domain B written as f : A → B is a relation f ⊆ A×B

such that if ⟨a, b⟩ ∈ f , then there is no b′ ∈ B distinct from b such that ⟨a, b′⟩ ∈ f . A total

function gets every element in its domain A mapped to something in B.

Alphabets, strings, languages An alphabet is a non-empty finite set of symbols, denoted

by Σ. A string over an alphabet Σ is a finite sequence of symbols from Σ. The length of a

string w (|w|) is the number of symbols in w. The empty string ϵ contains zero symbols and

thus |ϵ| = 0.

A language or a stringset is a set of strings. As usual, Σ∗ denotes the language which

includes all possible strings over the alphabet Σ. Σn is the language with all possible strings

of length n. Σ≤n is the language that include all possible strings of length less than or equal

to n. For example, if Σ = {0, 1}, Σ2 = {00, 11, 01, 10}, Σ≤2 = {ϵ, 0, 1, 00, 11, 01, 10} and

Σ∗ = {ϵ, 0, 1, 00, 11, 01, 10, 000 . . .}.

59

APPENDIX B

A proof of Theorem 2: closure under the intersection with regular languages

If L1 is a language recognized by a complete-path FSBM M1 = ⟨Q1,Σ, I1, F1, δ1, G1, H1⟩, and

L2 is a language recognized by an FSA M2 = ⟨Q2,Σ, I2, F2, δ2⟩, then L1 ∩ L2 is a language

recognizable by another FSBM.

Proof. by cross-product construction: construct such M to recognize L1 ∩ L2 where M =

⟨Q,Σ, I, F, δ,G,H⟩ with:

• Q = Q1 ×Q2

• I = I1 × I2

• F = F1 × F2

• G = G1 ×Q2

• H = H1 ×Q2

• ((q1, q
′
1), x, (q2, q

′
2)) ∈ δ iff (q1, x, q2) ∈ δ1 and (q′1, x, q

′
2) ∈ δ2

∵ G1 ∩H1 = ∅

∴ (G1 ×Q2) ∩ (H1 ×Q2) = ∅

∴ G ∩H = ∅

Then, we need to show L(M) = L1∩L2. To show this, we need to show 1): L(M) ⊆ L1∩L2;

2): L1 ∩ L2 ⊆ L(M).

1. L(M) ⊆ L1 ∩ L2 Assume w = x1x2x3...xn ∈ L(M) for n ≥ 0, N.T.S w ∈ L1 ∩ L2.

That’s to show w ∈ L1 and w ∈ L2.

60

Given w ∈ L(M), there exists a sequence of configurations D0, D1, D2...Dm for some

m ≥ 0 such that

• D0 is a starting configuration. That’s D0 = (w, (p0, q0), ϵ,n) with (p0, q0) ∈ I.

∴ p0 ∈ I1, q0 ∈ I2.

• Dm is a accepting configuration. That’s Dm = (ϵ, (pm, qm), ϵ,n) with (pm, qm) ∈

F .

∴ pm ∈ F1, qm ∈ F2.

• ∀i ∈ {0, 1, . . .m}, Di ⊢M Di+1

To show w ∈ L1, N.T.S ∃k ∈ N such that there exists a sequence of configurations

A0, A1...Ak of M1 such that A0 ⊢∗
M1

Ak in order to process w.

Similarly, to show w ∈ L2, N.T.S ∃l ∈ N such that there exists a sequence of configu-

rations B0, B1...Bl such that B0 ⊢∗
M2

Bl in order to process w.

∀0 ≤ i ≤ m, Di = (u, (pi, qi), v, x) for some u ∈ Σ∗, v ∈ Σ∗, x ∈ {n,b,e},

let Ai = (u, pi, v, x) and Bi = (u, qi).

W.T.S A0, A1, A2...Am and B0, B1, B2...Bm are such sequences.

Let’s focus on A0, A1, A2...Am first. Under such construction, we know

• A0 = (w, p0, ϵ,n) with p0 ∈ I1

∴ A0 is a starting configuration for w in M1

• Am = (ϵ, pm, ϵ,n) with pm ∈ F1

∴ Am is an accepting configuration for w in M1

Then, we are left to show that A0 ⊢∗
M1

Am. That’s ∀0 ≤ i < m, Ai ⊢M1 Ai+1. There

are six possible cases for Di ⊢M Di+1.

For some x ∈ Σ, u, v ∈ Σ∗,

(a) (xu, (pi, qi), ϵ, n) ⊢M (u, (pi+1, qi+1), ϵ, n).

∴ The following statements hold.

i. ((pi, qi), x, (pi+1, qi+1)) ∈ δ

61

ii. at least one state of (pi, qi), (pi+1, qi+1) /∈ H

iii. (pi, qi) /∈ G

∴ (pi, x, pi+1) ∈ δ1 and at least one of pi, pi+1 /∈ H1 and pi /∈ G1

∴ (xu, pi, ϵ,n) ⊢M1 (u, pi+1, ϵ,n)

∴ Ai ⊢M1 Ai+1

(b) (xu, (pi, qi), v,b) ⊢M (u, (pi+1, qi+1), vx, b).

∴ The following statements hold.

i. ((pi, qi), x, (pi+1, qi+1)) ∈ δ

ii. at least one state of (pi, qi), (pi+1, qi+1) /∈ H

iii. (pi+1, qi+1) /∈ G

∴ (pi, x, pi+1) ∈ δ1 and pi+1 /∈ G1 and at least one of pi, pi+1 /∈ H1

∴ (xu, pi, v,b) ⊢M1 (u, pi+1, vx,b)

∴ Ai ⊢M1 Ai+1

(c) (xu, (pi, qi), xv, e) ⊢M (u, (pi+1, qi+1), v, e).

∴ ((pi, qi), x, (pi+1, qi+1)) ∈ δ, (pi, qi) ∈ H and (pi+1, qi+1) ∈ H

∴ (pi, x, pi+1) ∈ δ1, pi ∈ H1 and pi+1 ∈ H1.

∴ (xu, pi, xv, e) ⊢M1 (u, pi+1, v, e).

∴ Ai ⊢M1 Ai+1

(d) (u, (pi, qi), ϵ, n) ⊢M (u, (pi+1, qi+1), ϵ, b).

∴ (pi, qi) = (pi+1, qi+1) ∈ G

∴ pi = pi+1 ∈ G1

∴ (u, pi, ϵ,n) ⊢M1 (u, pi+1, ϵ,b)

∴ Ai ⊢M1 Ai+1

(e) (u, (pi, qi), v, b) ⊢M (u, (pi+1, qi+1), v, e).

∴ (pi, qi) = (pi+1, qi+1) ∈ H

∴ pi = pi+1 ∈ H1

∴ (u, pi, v,b) ⊢M1 (u, pi+1, v,e)

∴ Ai ⊢M1 Ai+1

62

(f) (u, (pi, qi), ϵ, e) ⊢M (u, (pi+1, qi+1), ϵ, n).

∴ (pi, qi) = (pi+1, qi+1) ∈ H

∴ pi = pi+1 ∈ H1

∴ (u, pi, ϵ,e) ⊢M1 (u, pi+1, ϵ,n)

∴ Ai ⊢M1 Ai+1

Therefore, we see every transition among the constructed A0, A1, A2....Am sequence is

valid in M1. We can conclude that w ∈ L1.

Similarly, for B0, B1, B2....Bm, we know

• B0 = (w, q0) with q0 ∈ I2

∴ B0 is a starting configuration for w in M2

• Bm = (ϵ, qm) with qm ∈ F2

∴ Bm is an accepting configuration for w in M2

Then, we are left to show thatB0 ⊢∗
M2

Bm. That’s to show, in the sequenceB0, B1, B2 . . . Bm,

a configuration Bi goes into the next configuration Bi+1 in one step or zero steps. In

other words, ∀0 ≤ i < m, Bi ⊢M2 Bi+1 or Bi = Bi+1.

For some x ∈ Σ, u, v ∈ Σ∗,

(a) There are three possible cases for Di ⊢M Di+1 that makes Bi ⊢M2 Bi+1

• (xu, (pi, qi), ϵ, n) ⊢M (u, (pi+1, qi+1), ϵ, n).

∴ ((pi, qi), x, (pi+1, qi+1)) ∈ δ

∴ (qi, x, qi+1) ∈ δ2 with Bi = (xu, qi), Bi+1 = (u, qi+1)

• (xu, (pi, qi), v, b) ⊢M (u, (pi+1, qi+1), vx, b).

∴ ((pi, qi), x, (pi+1, qi+1)) ∈ δ

∴ (qi, x, qi+1) ∈ δ2 with Bi = (xu, qi), Bi+1 = (u, qi+1)

• (xu, (pi, qi), xv, e) ⊢M (u, (pi+1, qi+1), v, e).

∴ ((pi, qi), x, (pi+1, qi+1)) ∈ δ

∴ (qi, x, qi+1) ∈ δ2 with Bi = (xu, qi), Bi+1 = (u, qi+1)

63

∴ (xu, qi) ⊢M2 (u, qi+1)

∴ Bi ⊢M2 Bi+1

(b) There are three possible cases for Di ⊢M Di+1 that makes Bi = Bi+1

• (u, (pi, qi), ϵ, n) ⊢M (u, (pi+1, qi+1), ϵ, b).

∴ (pi, qi) = (pi+1, qi+1) with Bi = (u, qi), Bi+1 = (u, qi+1)

• (u, (pi, qi), v, b) ⊢M (u, (pi+1, qi+1), v, e).

∴ (pi, qi) = (pi+1, qi+1) with Bi = (u, qi), Bi+1 = (u, qi+1)

• (u, (pi, qi), ϵ, e) ⊢M (u, (pi+1, qi+1), ϵ, n).

∴ (pi, qi) = (pi+1, qi+1) with Bi = (u, qi), Bi+1 = (u, qi+1)

∴ (u, qi) = (u, qi+1)

∴ Bi = Bi+1

Therefore, we see every transition among the constructed B0, B1, B2....Bm sequence is

valid in M2. We can conclude that w ∈ L2.

2. L1 ∩ L2 ⊆ L(M)

Assume w = x1x2x3...xn ∈ L1, L2 for n ≥ 0, N.T.S w ∈ L(M).

∵ w ∈ L1

∴ there exists a sequence of configurations A0, A1, A2....Am with

• A0 = (w, p0, ϵ,n) with p0 ∈ I1

• Am = (ϵ, pm, ϵ,n) with pm ∈ F1

• ∀0 ≤ i < m, Ai ⊢M1 Ai+1

∵ w ∈ L2

∴ there exists a sequence of configurations B0, B1, B2....Bn. In other words, there would

be (n+ 1) configurations in this sequence for this length n string.

• B0 = (w, q0) with q0 ∈ I2

• Bn = (ϵ, qn) with qn ∈ F2

64

• ∀0 ≤ i < n, Bi ⊢M2 Bi+1

Then, to show w ∈ L(M), N.T.S that for some k ≥ 0, there is a sequence of configu-

rations D0, D1....Dk in M such that D0 ⊢∗
M Dk in order to process w.

• Let D0 = (w, (p0, q0), ϵ,n).

∴ (p0, q0) ∈ I

∴ D0 is a starting configuration for w in M

• ∀0 ≤ i < m, for some x ∈ Σ, u, v ∈ Σ∗

(a) If Ai = (xu, pi, ϵ,n), Ai+1 = (u, pi+1, ϵ,n),

then ∃ 0 ≤ j < n, Bj = (xu, qj), Bj+1 = (u, qj+1),

then let Di = (xu, (pi, qj), ϵ,n) and Di+1 = (u, (pi+1, qj+1), ϵ,n).

∵ Ai ⊢M1 Ai+1

∴ (pi, x, pi+1) ∈ δ1, and at least one state of pi, pi+1 /∈ H1, and pi /∈ G1

∵ Bj ⊢M2 Bj+1

∴ (qj, x, qj+1) ∈ δ2

∴ ((pi, qj), x, (pi+1, qj+1)) ∈ δ, and at least one state of (pi, qj), (pi+1, qj+1) /∈

H, and (pi, qj) /∈ G

∴ Di ⊢M Di+1

(b) If Ai = (xu, pi, v,b), Ai+1 = (u, pi+1, vx,b),

then ∃ 0 ≤ j < n, Bj = (xu, qj), Bj+1 = (u, qj+1),

then let Di = (xu, (pi, qj), v,b) and Di+1 = (u, (pi+1, qj+1), vx,b).

∵ Ai ⊢M1 Ai+1

∴ (pi, x, pi+1) ∈ δ1, and at least one state of pi, pi+1 /∈ H1, and pi+1 /∈ G1

∵ Bj ⊢M2 Bj+1

∴ (qj, x, qj+1) ∈ δ2

∴ ((pi, qj), x, (pi+1, qj+1)) ∈ δ, and at least one state of (pi, qj), (pi+1, qj+1) /∈

H, and (pi+1, qj+1) /∈ G

∴ Di ⊢M Di+1

(c) If Ai = (xu, pi, xv,e), Ai+1 = (u, pi+1, v,e),

65

then ∃ 0 ≤ j < n, Bj = (xu, qj), Bj+1 = (u, qj+1),

then let Di = (xu, (pi, qj), xv,e) and Di+1 = (u, (pi+1, qj+1), v,e).

∵ Ai ⊢M1 Ai+1

∴ (pi, x, pi+1) ∈ δ1, and pi ∈ H1, pi+1 ∈ H1

∵ Bj ⊢M2 Bj+1

∴ (qj, x, qj+1) ∈ δ2

∴ ((pi, qj), x, (pi+1, qj+1)) ∈ δ and (pi, qj) ∈ H, (pi+1, qj+1) ∈ H

∴ Di ⊢M Di+1

(d) If Ai = (xu, pi, ϵ,n), Ai+1 = (xu, pi+1, ϵ,b),

then ∃ 0 ≤ j < n, Bj = (xu, qj), Bj+1 = (u, qj+1),

then let Di = (xu, (pi, qj), ϵ,n) and Di+1 = (xu, (pi+1, qj), ϵ,b).

∵ Ai ⊢M1 Ai+1

∴ pi = pi+1 ∈ G1

∴ (pi, qj) = (pi+1, qj) ∈ G

∴ Di ⊢M Di+1

(e) If Ai = (xu, pi, v,b), Ai+1 = (xu, pi+1, v,e),

then ∃ 0 ≤ j < n, Bj = (xu, qj), Bj+1 = (u, qj+1),

then let Di = (xu, (pi, qj), v,b) and Di+1 = (xu, (pi+1, qj), v,e).

∵ Ai ⊢M1 Ai+1

∴ pi = pi+1 ∈ H1

∴ (pi, qj) = (pi+1, qj) ∈ H

∴ Di ⊢M Di+1

(f) If Ai = (xu, pi, ϵ,e), Ai+1 = (xu, pi+1, ϵ,n),

then ∃ 0 ≤ j < n, Bj = (xu, qj), Bj+1 = (u, qj+1),

then let Di = (xu, (pi, qj), ϵ,e) and Di+1 = (u, (pi+1, qj), ϵ,n).

∵ Ai ⊢M1 Ai+1

∴ pi = pi+1, and pi ∈ H1

∴ (pi, qj) = (pi+1, qj) and (pi, qj) ∈ H

∴ Di ⊢M Di+1

66

• Let Dm = (ϵ, (pm, qn), ϵ,n)

∴ (pm, qn) ∈ F

∴ Dm is an accepting configuration in M

The above construction uses those configurations for w in the FSBM M1 as main

ingredients. It enforces k = m. That’s we have (m+1) configurations to process w in

the intersection FSBM M . Moreover, it picks out the corresponding configurations in

the FSA M2 by matching input strings, which yields to unique configurations or pairs

of configurations in the B sequences.

Under such construction, we can start at D0 and follow the sequence of configurations

D0, D1, . . . Dm to process w in M .

67

APPENDIX C

A proof of Theorem 5: the construction for the copying expression operator

For any regular copying expression R = RC
1 with R1 as a regular expression. Then, there’s

an FSBM that accepts only L(R).

Proof. Assume there’s an FSAM0 = ⟨Q′,Σ, I ′, F ′, δ′⟩ that recognizesR1. LetM = ⟨Q,Σ, I, F, δ, G,H⟩

with

• Q = Q′ ∪ {q0, qf}

• G = I = {q0}

• H = F = {qf}

• δ = δ′ ∪ {(qf , x, qf) |x ∈ Σ } ∪{(q0, ϵ, q) | q ∈ I ′ } ∪{(q, ϵ, qf) | q ∈ F ′ }

To show L(M) = L(R), we need to show 1): L(M) ⊆ L(R); 2): L(R) ⊆ L(M).

• L(R) ⊆ L(M)

For any s ∈ L(R), ∃w = x1x2x3 . . . xn ∈ L(R1) such that s = ww

∵ w ∈ L(R1) = L(M0)

∴ there exists a sequence of configurations A0, A1, A2 . . . An to process w in M0.

Then, A0 = (w, p0) for some p0 ∈ I

An = (ϵ, pf) for some pf ∈ F

∀1 ≤ i < n, Ai = (xixi+1 . . . xn, pi) ⊢M0 Ai+1 = (xi+1 . . . xn, pi+1) with (pi, xi, pi+1) ∈

δ′

Let D0 = (ww, q0, ϵ,n). It’s easy to see D0 is a starting configuration of s in M .

∵ q0 ∈ G

∴ D1 = (ww, q0, ϵ,b)

68

∵ (q0, ϵ, p0) ∈ δ

∴ D2 = (ww, p0, ϵ,b)

By going through p0, p1, p2 . . . pn in A0, A1, A2 . . . An, we can reach D2+n+1 = (w, pn,

w, b)

∵ (pn, ϵ, qf) ∈ δ

∴ D2+n+2 = (w, qf , w,b)

∵ qf ∈ H

∴ D2+n+2 = (w, qf , w,e)

∵ ∀x ∈ Σ, (pf , x, pf) ∈ δ

∴ ∀y appears in w, (pf , y, pf) ∈ δ

∴ By following the loops on pf , we can reach D2+n+2+n = (ϵ, qf , ϵ,e)

∵ qf ∈ H

∴ we can reach D2+n+2+n+1 = (ϵ, qf , ϵ,n), which is an accepting configuration

∴ s = ww ∈ L(M)

• L(M) ⊆ L(R)

For any s ∈ L(M), N.T.S s ∈ L(R).

∵ s ∈ L(M)

∴ there exists a sequence of configurations D0, D1, D2 . . . Dm such that 1): D0 =

(s, q0, ϵ,n); 2): Dm = (ϵ, qf , ϵ,n); 3): ∀1 ≤ j < m, Dj ⊢M Dj+1

∵ q0 ∈ G

∴ D1 = (s, q0, ϵ,b)

∵ the only transitions from q0 are (q0, ϵ, p0) with some p0 ∈ I ′

∴ D2 = (s, p0, ϵ,b)

∵ Dm = (ϵ, qf , ϵ,n) and only qf is the H state

∴ Dm−1 = (ϵ, qf , ϵ,e)

∴ ∃2 ≤ k < m− 1 such that ∃w ∈ Σ∗ with Dk−1 = (w, qf , w,b) and Dk = (w, qf , w,e)

∵ the only transitions to qf are (pf , ϵ, qf) with some pf ∈ F ′

∴ Dk−2 = (w, pf , w,b)

From D2 to Dk−2, the machine M can go from p0 to pf for w and the only transitions

69

from p0 to pf is by taking the previous transitions in δ′, which means w ∈ L(M0) =

L(R1) and s = ww.

∴ s ∈ L(R)

70

Bibliography

Albro, D. M. (1998). Evaluation, implementation, and extension of primitive optimality

theory. Master’s thesis, UCLA.

Albro, D. M. (2000). Taking primitive Optimality Theory beyond the finite state. In Proceed-

ings of the Fifth Workshop of the ACL Special Interest Group in Computational Phonology,

pages 57–67, Centre Universitaire, Luxembourg. International Committee on Computa-

tional Linguistics.

Albro, D. M. (2005). Studies in computational optimality theory, with special reference to

the phonological system of Malagasy. PhD thesis, University of California, Los Angeles,

Los Angeles.

Bagemihl, B. (1989). The crossing constraint and ‘backwards languages’. Natural language

& linguistic Theory, 7(4):481–549.

Baschenis, F., Gauwin, O., Muscholl, A., and Puppis, G. (2017). Untwisting two-way trans-

ducers in elementary time. In 2017 32nd Annual ACM/IEEE Symposium on Logic in

Computer Science (LICS), pages 1–12.

Beesley, K. R. and Karttunen, L. (2000). Finite-state non-concatenative morphotactics. In

Proceedings of the 38th Annual Meeting of the Association for Computational Linguistics,

pages 191–198, Hong Kong. Association for Computational Linguistics.

Beesley, K. R. and Karttunen, L. (2003). Finite State Morphology. CSLI Studies in Com-

putational Linguistics. CSLI Publications.

Bogoras, W. (1969). Chukchee, volume 40 of Bureau of American ethnology bulletin:vol 40.

Handbook of American Indian languages, Part 2. Government Printing Office, Washington.

Broselow, E. (1983). Salish double reduplications: Subjacency in morphology. Natural

Language Linguistic Theory, 1:317–346.

Chandlee, J. (2014). Strictly local phonological processes. PhD thesis, University of Delaware.

71

Chandlee, J. (2017). Computational locality in morphological maps. Morphology, 27:599–

641.

Chandlee, J. and Heinz, J. (2012). Bounded copying is subsequential: Implications for

metathesis and reduplication. In Proceedings of the Twelfth Meeting of the Special Interest

Group on Computational Morphology and Phonology, pages 42–51, Montréal, Canada.

Association for Computational Linguistics.

Chomsky, N. (1956). Three models for the description of language. IRE Trans. Inf. Theory,

2:113–124.

Chomsky, N. (1959). On certain formal properties of grammars. Information and Control,

2(2):137–167.

Clark, A. and Yoshinaka, R. (2014). Distributional learning of parallel multiple context-free

grammars. Mach. Learn., 96(1–2):5–31.

Cohen-Sygal, Y. and Wintner, S. (2006). Finite-state registered automata for non-

concatenative morphology. Computational Linguistics, 32(1):49–82.

Culy, C. (1985). The complexity of the vocabulary of bambara. Linguistics and philosophy,

8(3):345–351.

Dixon, R. M. W. (1972). The Dyirbal Language of North Queensland, volume 9 of Cambridge

Studies in Linguistics. Cambridge University Press, Cambridge.

Dolatian, H. and Heinz, J. (2018a). Learning reduplication with 2-way finite-state trans-

ducers. In Unold, O., Dyrka, W., and Wieczorek, W., editors, Proceedings of the 14th

International Conference on Grammatical Inference, volume 93 of Proceedings of Machine

Learning Research, pages 67–80. PMLR.

Dolatian, H. and Heinz, J. (2018b). Modeling reduplication with 2-way finite-state transduc-

ers. In Proceedings of the Fifteenth Workshop on Computational Research in Phonetics,

Phonology, and Morphology, pages 66–77, Brussels, Belgium. Association for Computa-

tional Linguistics.

72

Dolatian, H. and Heinz, J. (2019). Redtyp: A database of reduplication with computational

models. In Proceedings of the Society for Computation in Linguistics, volume 2. Article 3.

Dolatian, H. and Heinz, J. (2020). Computing and classifying reduplication with 2-way

finite-state transducers. Journal of Language Modelling, 8(1):179–250.

Eisner, J. (1997). Efficient generation in primitive Optimality Theory. In 35th Annual Meet-

ing of the Association for Computational Linguistics and 8th Conference of the European

Chapter of the Association for Computational Linguistics, pages 313–320, Madrid, Spain.

Association for Computational Linguistics.

Ellison, T. M. (1994). Phonological derivation in optimality theory. In Proceedings of the

15th Conference on Computational Linguistics - Volume 2, COLING ’94, page 1007–1013,

USA. Association for Computational Linguistics.

Gazdar, G. and Pullum, G. K. (1985). Computationally relevant properties of natural lan-

guages and their grammars. New generation computing, 3(3):273–306.

Graf, T. (2013). Local and Transderivational Constraints in Syntax and Semantics. PhD

thesis, UCLA.

Graf, T. (2017). The power of locality domains in phonology. Phonology, 34(2):385–405.

Healey, P. M. (1960). An Agta Grammar. Bureau of Printing, Manila.

Heinz, J. (2007). The Inductive Learning of Phonotactic Patterns. PhD thesis, University

of California, Los Angeles.

Heinz, J. (2018). The computational nature of phonological generalizations. In Hyman, L.

and Plank, F., editors, Phonological Typology, Phonetics and Phonology, chapter 5, pages

126–195. De Gruyter Mouton.

Heinz, J., Rawal, C., and Tanner, H. G. (2011). Tier-based strictly local constraints for

phonology. In Proceedings of the 49th Annual Meeting of the Association for Computational

Linguistics: Human language technologies, pages 58–64.

73

Hopcroft, J. E. and Ullman, J. D. (1979). Introduction to automata theory, languages, and

computation. Addison-Welsey, NY.

Hulden, M. (2009). Finite-state Machine Construction Methods and Algorithms for Phonol-

ogy and Morphology. PhD thesis, University of Arizona, Tucson, USA.

Inkelas, S. (2008). The dual theory of reduplication. 46(2):351–401.

Inkelas, S. and Zoll, C. (2005). Reduplication: Doubling in morphology, volume 106. Cam-

bridge University Press.

Jäger, G. and Rogers, J. (2012). Formal language theory: refining the chomsky hierarchy.

Philosophical Transactions of the Royal Society B: Biological Sciences, 367(1598):1956–

1970.

Jardine, A. (2016). Computationally, tone is different. Phonology, 33:247–283.

Johnson, C. D. (1972). Formal aspects of phonological description.

Joshi, A. K. (1985). Tree adjoining grammars: How much context-sensitivity is required to

provide reasonable structural descriptions?, page 206–250. Studies in Natural Language

Processing. Cambridge University Press.

Joshi, A. K., Shanker, K. V., and Weir, D. (1990). The convergence of mildly context-

sensitive grammar formalisms. Technical Reports (CIS).

Kaplan, R. M. and Kay, M. (1994). Regular models of phonological rule systems. Comput.

Linguist., 20(3):331–378.

Kobele, G. M. (2006). Generating Copies: An investigation into structural identity in lan-

guage and grammar. PhD thesis, University of California, Los Angeles.

Marantz, A. (1982). Re reduplication. Linguistic inquiry, 13(3):435–482.

Marcus, G. F., Fernandes, K. J., and Johnson, S. P. (2007). Infant rule learning facilitated

by speech. Psychological Science, 18(5):387–391. PMID: 17576276.

74

Marcus, G. F., Vijayan, S., Rao, S. B., and Vishton, P. M. (1999). Rule learning by seven-

month-old infants. Science, 283(5398):77–80.

McCarthy, J. J. and Prince, A. S. (1995). Faithfulness and reduplicative identity.

McCollum, A. G., Baković, E., Mai, A., and Meinhardt, E. (2020). Unbounded circumam-

bient patterns in segmental phonology. Phonology, 37:215 – 255.

McNaughton, R. and Papert, S. A. (1971). Counter-Free Automata (MIT research monograph

no. 65). The MIT Press.

Moreton, E., Prickett, B., Pertsova, K., Fennell, J., Pater, J., , and Sanders, L. (2021).

Learning reduplication, but not syllable reversal. In Bennett, R., Bibbs, R., Brinkerhoff,

M. L., Max J. Kaplan, S. R., Rysling, A., Handel, N. V., and Cavallaro, M. W., editors,

Supplemental Proceedings of the 2020 Annual Meeting on Phonology.

Nishida, T. and Seki, S. (2000). Grouped partial et0l systems and parallel multiple context-

free grammars. Theoretical Computer Science, 246(1):131–150.

Rabin, M. O. and Scott, D. (1959). Finite automata and their decision problems. IBM

journal of research and development, 3(2):114–125.

Riggle, J. (2004). Nonlocal reduplication. In Proceedings of the 34th Meeting of the North-

East Linguistics Society (NELS 34), page 485–496, USA. GLSA, University of Mas-

sachusetts.

Roark, B. and Sproat, R. (2007). Computational approaches to morphology and syntax,

volume 4. Oxford University Press.

Rubino, C. (2013). Reduplication. In Dryer, M. S. and Haspelmath, M., editors, The World

Atlas of Language Structures Online. Max Planck Institute for Evolutionary Anthropology,

Leipzig.

Seki, H., Matsumura, T., Fujii, M., and Kasami, T. (1991). On multiple context-free gram-

mars. Theoretical Computer Science, 88(2):191–229.

75

Shepherdson, J. C. (1959). The reduction of two-way automata to one-way automata. IBM

Journal of Research and Development, 3(2):198–200.

Shieber, S. M. (1985). Evidence against the context-freeness of natural language. In Philos-

ophy, Language, and Artificial Intelligence, pages 79–89. Springer.

Simon, I. (1975). Piecewise testable events. In Brakhage, H., editor, Automata Theory and

Formal Languages, pages 214–222, Berlin, Heidelberg. Springer Berlin Heidelberg.

Sipser, M. (2013). Introduction to the Theory of Computation. Course Technology, Boston,

MA, third edition.

Smolensky, P. and Prince, A. (1993). Optimality theory: Constraint interaction in generative

grammar. Optimality Theory in phonology, 3.

Stabler, E. (1997). Derivational minimalism. In Retoré, C., editor, Logical Aspects of Com-

putational Linguistics, pages 68–95, Berlin, Heidelberg. Springer Berlin Heidelberg.

Stabler, E. P. (2004). Varieties of crossing dependencies: Structure dependence and mild

context sensitivity. Cognitive Science, 93(5):699–720.

Steedman, M. (1996). Surface Structure and Interpretation. MIT Press, Cambridge, MA,

USA.

Waksler, R. (1999). Cross-linguistic evidence for morphological representation in the mental

lexicon. Brain and Language, 68(1):68–74.

Walther, M. (2000). Finite-state reduplication in one-level prosodic morphology. In 1st

Meeting of the North American Chapter of the Association for Computational Linguistics.

Yip, M. (1995). Repetition and its avoidance: The case of javanese. In Proceedings of the

South Western Optimality Theory workshop 1995.Arizona Phonology Conference Volume

5,, pages 238—-262, Tucson, AZ. University of Arizona.

Zuraw, K. (1996). Floating phonotactics: Infixation and reduplication in tagalog loanwords.

Master’s thesis, UCLA.

76

Zuraw, K. (2002). Aggressive reduplication. Phonology, 19(3):395–439.

77

