1. Setting

We return to the classical UR-learning problem (e.g. Tesar et al., 2003; Jarosz, 2006; Merchant, 2008; Pater et al., 2012; Tesar, 2014; Cotterell et al., 2015; Jaross, 2015; Rasin and Katzir, 2016; Rasin et al., 2021; O'Hara, 2017; Nelson, 2019; Hua et al. 2021, Hua and Jardine 2021, Tan 2022, Elis et al. 2022)

- Scale up learning simulations, to the size of first-year problem sets.

Readdress the Abstractness Controversy in computational terms
2. The proposed learning system: Architecture

Any procedure marked with * is omitted. For details, see the full paper. Feel free to ask!

3. Example Language: Tangale (Kidda 1985)

Target UR	Noun	'the N ' /-i/	'your N' /-go/	Gloss
/tugad/	tugat	tugad-i	tugad-go	'berry'
/bugat/	bugat	bugat-i	bugat-ko	'window'
/wudo/	wudo	wud-i	wud-go	'tooth'
/lutu/	lutu	lut-i	lut-ko	'bag'
	(+8 more stems, 2 more paradigm slots)			

Word final
obstruent devoicing
Stem-final (short) vowel
syncope before any suffix
Progressive voicing assimilation
 lutu-go/ \rightarrow lutgo \rightarrow [lut-ko $]$

4. Constructing the UR candidates: the KK hierarchy

KK-hierarchy : Kenstowicz and Kisseberth (1977, ch 1)
Key insight: the candidate URs can be projected from the set of surface allomorphs. Higher levels \rightarrow a larger set of UR candidates

$$
\begin{array}{|l|l|c|}
\hline \text { Level } & \text { Meaning } & \text { e.g. Tangale 'berry' } \\
\hline \text { B" } & \text { Single surface base hypothesis Albright 2002 } & \text { If base = isolation form,*/tugat/ } \\
\hline \text { C } & \text { UR is some surface allomorph } & \checkmark / \text { tugad/,*/tugat/ } \\
\hline \text { D \& E } & \text { (omitted here) } & \\
\hline \text { Z } & \begin{array}{l}
\text { Apply all attested alternations } \\
\\
\\
\text { to all attested allomorphs }
\end{array} & \text { /tugad/, /tugat/, /tgad/, /dukat/ } \\
\hline
\end{array}
$$

The learning task: select the right UR among the candidates, and learn phonology simultaneously.
5. Learning Tangale phonology: Modeling

- Data: 60 word forms, examplified as before

Initialization: all UR candidates for each morpheme are equiprobable, all weights initialized as $\mathbf{1}$ for each weight optimization procedure

- Convergence criterion: Δ (log likelihood) $<10^{-5}$

6. Results

Constraint set with weights fitted under both models:

Constraint	KK-C	KK-Z
*V]X	65.9	67.6
*FinalVoicedObs	35.9	17.9
Agree[Voice]	45.1	48.4
Ident[Voice]	4.4	5.26
Ident $[\text { Voice }]_{\text {stem }}$	17.7	22.4
Max	24.8	27.31
Dep	36.7	0

Log-likelihood $\quad-5.2 \times 10^{-4}-4.5$

Failed learning with KK-Z
Successful learning under KK-C
. in URs: learnt erroneous */tgat/,
*/tugat/

- the linguist's answer
... consensus UR's
. near-perfect output accuracy.
. thus in outputs:
$\mathrm{P}($ ' 'our berry', *[tugatko]) $=25 \%$ (tugadgo)
$\mathrm{P}($ 'berry', *[tugado]) $=75 \%$ (tugat])

7. Diagnosis of $K K-Z$ failure

- The system gets trapped in a local maximum

- Partial diagnosis: the KK-Z UR candidate /tgat/ \rightarrow [tugat] forces the system to consider an epenthesis grammar \rightarrow low weights to DEP \rightarrow terminal confusion This doesn't happen when the initial state has a more reasonable candidate set

8. Summary \& Conclusions

The need to scale up: We worked on scaling up to problem-set size
Other languages: Catalan, Lamba, Seediq, English plurals, Indonesian
Exploring abstractness

- The abstract debate long ago (1970's): whether abstract phonology is learnable. - Computational phonology can address such claims concretely: try the same learning system with different degrees of abstractness permitted.

Too-abstract UR \rightarrow large search space \rightarrow fatal local maxima
. All of this is tentative, pending additional research
2. in psycholinguistics: what URs are actually learnt

Appendix 1. the Objective

The log-likelihood of the observed data (cf. O'Hara 2017)

$$
\begin{equation*}
\ln (P(D \mid \theta, W))=\sum_{(s, \omega) \in D} f(s, \omega) \ln \left(\sum_{u_{\omega}} P\left(s \mid u_{\omega}, W\right) P\left(u_{\omega} \mid \omega, \theta\right)\right) \tag{1}
\end{equation*}
$$

where

$$
\begin{aligned}
& p\left(s \mid u_{\omega}, W\right)=\frac{\exp \left(-\sum_{i} W_{i} C_{i}\left(u_{\omega}, s\right)\right)}{\sum_{\substack{s \in \operatorname{GeN}\left(\omega_{\omega}\right)}} \exp \left(-\sum_{i} W_{i} C_{i}\left(u_{\omega}, s^{\prime}\right)\right)} \\
& P\left(u_{\omega} \mid \omega, \theta\right)=\prod_{i=1}^{n} \theta_{\left.\mu_{\mu}, u_{i}\right)} \mathrm{if} u_{\omega}=u_{1} u_{2} u_{3} \ldots u_{n} \text { and } \omega=\mu_{1} \mu_{2} \mu_{3} \ldots \mu_{n}
\end{aligned}
$$

Appendix 2. Searching with Expectation Maximization

Given $\mathrm{D}=\{(s, \omega)\}$ (SR, Word) pairs, the learner conducts an iterative search, maximizing the likelihood.

```
Input: D, maxlteration, \(\theta^{0}, W^{0}\)
Output: \(\theta^{f}, W^{f}\)
Input: D, maxiter
Output: \(\theta^{f}, W^{f}\)
```

Function EM-MaxEnt Learner:
iter $=0$
Repeat until converg
$\mathrm{E}=\mathrm{E}-$ step $\left(\mathrm{W}^{t}, \theta^{t}\right)$
$\mathrm{W}^{t+1}=\mathrm{M}-\operatorname{stap}_{W}(\mathrm{E})$
$\mathrm{W}^{t+1}=\mathrm{M}-\mathrm{Sttep}_{W}(\mathrm{E})$
$\mathrm{E}^{\prime}=\mathrm{step}\left(\mathrm{W}^{t+1}, \theta^{t}\right)$
$\mathrm{E}^{\prime}=\mathrm{E}$-step $\left(\mathrm{W}^{\mathrm{W}+1}, \theta^{\prime}\right)$
$\theta^{t+1}=\mathrm{M}$-step $\left(\mathrm{E}^{\prime}\right)$ $\theta^{+1}=\mathrm{M}$ -
iter $+=1$
while iter \leq maxlteration
${ }^{10}$ Function M-step $p_{W}(E)$:
$\mathrm{W}=\underset{w}{\operatorname{argmax}} \sum_{(s, \omega)} \sum_{w_{w}} E\left(u_{\omega}, s, \omega\right) \ln \left(p\left(s \mid u_{\omega}, W\right)\right)$
return w
${ }_{13}$ Function E-step (W, θ)
$14 \quad$ for $(s, \omega) \in D$ do
${ }_{15}^{15} \quad$ for $u_{\omega} \in U_{\omega}$ do
$16 \quad \mathrm{P}_{u_{\omega}}=$

$$
\frac{\sum_{u_{\omega}^{\prime}} P P\left(s \mid u_{\omega} ; W\right) P\left(u_{\omega} \mid \omega, \theta\right)}{P\left(u^{\prime} ; W\right) P\left(u^{\prime} \mid \omega, \theta\right)}
$$

$18 \underset{\sim}{\square} \quad \underset{ }{\square}$ eturn E

$$
\mathrm{E}\left(\mathrm{u}_{\omega}, s, \omega\right)=P_{u_{\omega}} \cdot f(s, \omega)
$$

19 Function M-step (E) :
${ }^{20} \quad M \leftarrow$ set of word forms containing μ
$\theta_{(\mu, u)}=\frac{\sum(s, \omega) \in M \sum u_{\omega} E\left(u_{\omega}, s, \omega\right)}{\sum_{u^{\prime}} \sum(s, \omega) \in M \sum_{u_{\omega}} E\left(u_{\omega}, s, \omega\right)}$
22 return θ

