

1. Setting

- We return to the classical **UR-learning problem** (e.g. 2006; Merchant, 2008; Pater et al., 2012; Tesar, 2014; Cotterell et al., 2015; Jarosz, 2015; Ra Rasin et al., 2021; O'Hara, 2017; Nelson, 2019; Hua et al. 2021, Hua and Jardine 2021, Tan
- Goals
- Scale up learning simulations, to the size of first-year problem sets.
- Readdress the Abstractness Controversy in computational terms

2. The proposed learning system: Architecture

Any procedure marked with * is omitted. For details, see the full paper. Feel free to ask!

Download draft paper (still in progress) and references References can be obtained by looking at the draft paper, downloadable by scanning the QR code. Acknowledgement: Many thanks to Tim Hunter, Claire Moore-Cantwell, Colin Wilson, the audience of the UCLA Phonology Seminar and the anonymous reviewers for their comments, feedback and insights. Special thanks to Jennifer Kuo for providing the Seediq data.

Learning underlying representations: The role of Expectation-Maximization and the KK Hierarchy

Yang Wang and Bruce Hayes

yangwangx@g.ucla.edu, bhayes@humnet.ucla.edu; Department of Linguistics, UCLA

Tesar et al., 2003; Jarosz,
asin and Katzir, 2016;
2022, Ellis et al. 2022)

3. Example Language: Tangale (Kidda 1985)

Target U	IR Noun	'the N'
		/-i/
/tugad/	tugat	tugad-i
/bugat/	bugat	bugat-i
/wudo/	wudo	wud-i
/lutu/	lutu	lut-i
	(+ 8 more stem)	s, 2 more par

Word final	$/tugad/ \rightarrow$ [tugat]; cf. [tugad-i]
obstruent devoicing	Compare: [bugat] \sim [bugat-i] with invariant [t]
Stem-final (short) vowel	/wudo-i/ \rightarrow [wud-i]
syncope before any suffix	cf. [wudo]
Progressive voicing assimilation	/bugat-go/ ightarrow [bugat-ko]
	/lutu-go/ $ ightarrow$ lutgo $ ightarrow$ [lut-ko]

4. Constructing the UR candidates: the KK hierarchy

KK-hierarchy : Kenstowicz and Kisseberth (1977, ch 1)

- Key insight: the candidate URs can be projected from the set of surface allomorphs.
- Higher levels \rightarrow a larger set of UR candidates

•	U	
Level	Meaning	e.g. Tangale 'berry'
B"	Single surface base hypothesis Albright 2002	If base = isolation form,*/tugat/
С	UR is some surface allomorph	√ /tugad/,*/tugat/
D & E	(omitted here)	
Ζ	Apply all attested alternations	/tugad/, /tugat/, /tgad/, /dukat/
	to all attested allomorphs	+28 others

• The learning task: select the right UR among the candidates, and learn phonology simultaneously.

5. Learning Tangale phonology: Modeling

- Data: 60 word forms, examplified as before
- Initialization: all UR candidates for each morpheme are **equiprobable**, all weights initialized as **1** for each weight optimization procedure
- Convergence criterion: $\Delta(\log \text{ likelihood}) < 10^{-5}$

6. Results

• Constraint set with weights fitted under both models:

*V]X 65.9 *FINALVOICEDOBS 35.9 AGREE[VOICE] 45.1 IDENT[VOICE] 4.4 IDENT[VOICE] _{STEM} 17.7 MAX 24.8 DEP 36.7	67.6 17.9 48.4 5.26
AGREE[VOICE] 45.1 IDENT[VOICE] 4.4 IDENT[VOICE] _{STEM} 17.7 MAX 24.8	48.4
IDENT[VOICE] 4.4 IDENT[VOICE]_{STEM} 17.7 MAX 24.8	_
$\begin{array}{l} \text{IDENT} \begin{bmatrix} \text{VOICE} \end{bmatrix}_{\text{STEM}} & 17.7 \\ \text{MAX} & 24.8 \end{array}$	5.26
MAX 24.8	
	22.4
Dep 36.7	27.31
	0
•••	•••
Log-likelihood -5.2>	$ imes 10^{-4}$ -4.5

Annual Meeting of Phonology 2022, Los Angeles

	Failed I
Successful learning under KK-C	• in l
the linguist's answer	*/tuga
 consensus UR's 	• thu
 near-perfect output accuracy. 	P(<i>'you</i>
	P(<i>'berr</i>

Phonological constraints

*FINALVOICEDOBS 1 Ident[Voice] • • •

'your N /-go/ tugad-go bugat-ko wud-go lut-ko aradigm slots)

Gloss 'berry' 'window' 'tooth' 'bag'

KK-Z

- URs: learnt erroneous */tgat/,
- us in outputs:
- *ur berry'*, *[tugatko])=25% ([tugadgo])
- *rry'*, *[tugado])=75% ([tugat])

- The system gets trapped in a **local maximum**

- Exploring abstractness

- in learning algorithms

The log-likelihood of the observed data (cf. O'Hara 2017)

where

Appendix 2. Searching with Expectation Maximization

Given $D = \{(s, \omega)\}$ (SR, Word) pairs, the learner conducts an iterative search, maximizing the likelihood.

	١.	nput: D, maxIteration, θ^0 , W^0
	II C	Dynamic ration , θ , W Dutput: θ^f , W^f
1		function EM-MaxEnt Learner
2		iter = 0
3		Repeat until converge
4		$E = E ext{-step}(W^t, heta^t)$
5		$W^{t+1} = M ext{-step}_W(E)$
6		$E'=E ext{-step}(W^{t+1}, heta^t)$
7		$\theta^{t+1} = M\operatorname{-step}_{\theta}(E')$
8		iter $+=1$
9		while iter <i>≤maxlteration</i>
LO	F	function $M-step_W$ (E):
11		$W = \operatorname*{argmax}_{W} \sum_{(s, \omega)} \sum_{u_{\omega}} E(u_{\omega}, s, \omega)$
12		return w

7. Diagnosis of KK-Z failure

• Partial diagnosis: the KK-Z UR candidate $/tgat/ \rightarrow$ [tugat] forces the system to consider an epenthesis grammar \rightarrow low weights to $DEP \rightarrow$ terminal confusion

• This doesn't happen when the initial state has a more reasonable candidate set.

8. Summary & Conclusions

• The need to scale up: We worked on scaling up to problem-set size. Other languages: Catalan, Lamba, Seediq, English plurals, Indonesian

• The abstract debate long ago (1970's): whether abstract phonology is learnable. Computational phonology can address such claims concretely: try the same learning system with different degrees of abstractness permitted.

Too-abstract UR \rightarrow large search space \rightarrow fatal local maxima

• All of this is tentative, pending additional research :

2. in psycholinguistics: what URs are actually learnt

Appendix 1. the Objective

